Unsteady bending of a cantilevered Euler-Bernoulli beam with diffusion
DOI:
https://doi.org/10.7242/1999-6691/2021.14.1.4Keywords:
elastic diffusion, Green's function, Euler-Bernoulli beam, d'Alembert principle, equivalent boundary condition method, numerical analysisAbstract
We considered the problem of unsteady direct bending of an isotropic homogeneous elastodiffusive cantilevered Euler-Bernoulli beam. For the mathematical formulation of the problem, we use the closed system of equations of transverse unsteady beam vibrations with inner diffusion. The formulation is based on the model of elastic diffusion using the d'Alember variational principle. It is assumed that the deflections of the beam are small and the hypothesis of flat sections is fulfilled. The Euler-Bernoulli hypothesis is valid for section rotations. A solution to the problem is sought using the method of equivalent boundary conditions, which allows a transition from the initial formulation with arbitrary boundary conditions to the problem of the same type and with the same domain geometry. First, an auxiliary problem is solved using the integral Laplace transform in time and trigonometric Fourier series. Then, some relations connecting the boundary conditions right-hand sides of the original and auxiliary problems are constructed. These relations are the Volterra integral equations of the first kind. For solving this system, quadrature formulas of an average rectangle are used. Finally, the solution of the original problem is represented in the form of the convolution of the Green's functions for the auxiliary problem with the functions determined by solving the system of the Volterra integral equations. The interaction between unsteady mechanical and diffusion fields is analyzed using an isotropic beam as an example. Graphs showing the dependence of the displacement fields and concentration increments on time and coordinates are given. Analysis of the results obtained led to conclusion that the coupling action of mechanical and diffusion fields affects the stress-strain state and mass transfer in a beam
Downloads
References
Knyazeva A.G., Pobol I.L., Romanova V.A. Stress field in the diffusion zone of an electron-beam brazed joint. Fiz. mezomekh. – Physical Mesomechanics, 2001, vol. 4, no. 5, pp. 41-53.
Aouadi M. A generalized thermoelastic diffusion problem for an infinitely long solid cylinder. Int. J. Math. Math. Sci., 2006, vol. 2006, 025976. https://doi.org/10.1155/IJMMS/2006/25976">https://doi.org/10.1155/IJMMS/2006/25976
Kumar R., Kansal T. Dynamic problem of generalized thermoelastic diffusive medium. J. Mech. Sci. Technol., 2010, vol. 24, pp. 337-342. https://doi.org/10.1007/s12206-009-1109-6">https://doi.org/10.1007/s12206-009-1109-6
Sherief H.H., Saleh H. A half space problem in the theory of generalized thermoelastic diffusion. Int. J. Solid. Struct., 2005, vol. 42, pp. 4484-4493. https://doi.org/10.1016/j.ijsolstr.2005.01.001">https://doi.org/10.1016/j.ijsolstr.2005.01.001
Shvets R.N., Flyachok V.M. Uravneniya mekhanotermodiffuzii anizotropnykh obolochek s uchetom poperechnykh deformatsiy [The equations of mechanothermodiffusion of anisotropic shells taking account of transverse strains]. Mat. metody fiz.-mekh. polya, 1984, no. 20, pp. 54-61.
Aouadi M., Copetti M.I.M. Analytical and numerical results for a dynamic contact problem with two stops in thermoelastic diffusion theory. ZAMM Z. Angew. Math. Mech., 2015, vol. 93, pp. 361-384. https://doi.org/10.1002/zamm.201400285">https://doi.org/10.1002/zamm.201400285
Aouadi M., Copetti M.I.M., Fernández J.R. A contact problem in thermoviscoelastic diffusion theory with second sound. ESAIM: Mathematical Modelling and Numerical Analysis, 2017, vol. 51, pp. 759-796. https://doi.org/10.1051/m2an/2016039">https://doi.org/10.1051/m2an/2016039
Aouadi M., Miranville A. Smooth attractor for a nonlinear thermoelastic diffusion thin plate based on Gurtin-Pipkin’s model. Asymptotic Analysis, 2015, vol. 95, pp. 129-160. https://doi.org/10.3233/ASY-151330">https://doi.org/10.3233/ASY-151330
Aouadi M. On thermoelastic diffusion thin plate theory. Appl. Math. Mech.-Engl. Ed., 2015, vol. 36, pp. 619-632. https://doi.org/10.1007/s10483-015-1930-7">https://doi.org/10.1007/s10483-015-1930-7
Aouadi M., Miranville A. Quasi-stability and global attractor in nonlinear thermoelastic diffusion plate with memory. Evolution equations and control theory, 2015, vol. 4, pp. 241-263. http://dx.doi.org/10.3934/eect.2015.4.241">http://dx.doi.org/10.3934/eect.2015.4.241
Bhattacharya D., Kanoria M. The influence of two-temperature fractional order generalized thermoelastic diffusion inside a spherical shell. IJAIEM, 2014, vol. 3, is. 8, pp. 096-108
Tarlakovskii D.V., Zemskov A.V. An elastodiffusive orthotropic Euler-Bernoulli beam with considering diffusion flux relaxation. Math. Comput. Appl., 2019, vol. 24, 23. https://doi.org/10.3390/mca24010023">https://doi.org/10.3390/mca24010023
Zemskov A.V., Tarlakovskii D.V. Modelling of unsteady elastic diffusion oscillations of a Timoshenko beam. Nonlinear Wave Dynamics of Materials and Structures, ed. H. Altenbach, V. Eremeyev, I. Pavlov, A. Porubov. Springer, 2020. Pp. 447-461. https://doi.org/10.1007/978-3-030-38708-2_27">https://doi.org/10.1007/978-3-030-38708-2_27
Afanasieva O.A., Zemskov A.V. Unsteady elastic-diffusion oscillations of a simply supported Kirchhoff plate under the distributed transverse load action. Proceedings of the Third International Conference on Theoretical, Applied and Experimental Mechanics, ed. E. Gdoutos, M. Konsta-Gdoutos. Springer, 2020. Pp. 181-186. https://doi.org/10.1007/978-3-030-47883-4_34
Knyazeva A.G. Vvedeniye v termodinamiku neobratimykh protsessov [Introduction to the thermodynamics of irreversible processes]. Tomsk, Ivan Fedorov publishing house, 2014. 172 p.
Eremeyev V.S. Diffuziya i napryazheniya [Diffusion and stresses]. Moscow, Energoatomizdat, 1984. 182 p.
Zemskov A.V., Tarlakovskiy D.V. Method of the equivalent boundary conditions in the unsteady problem for elastic diffusion layer. Materials Physics and Mechanics, 2015, vol. 23, no. 1, pp. 36-41.
Zemskov A.V., Tarlakovskii D.V. Resheniye dvumernykh zadach mekhanodiffuzii s pomoshch’yu integral’nykh uravneniy Vol’terra 1-go roda [Solution of two-dimensional problems of mechanodiffusion using Volterra integral equations of the 1st kind]. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva – Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2016, vol. 13, no. 1, pp. 49-56.
Ditkin V.A., Prudnikov A.P. Spravochnik po operatsionnomu ischisleniyu [Operational calculus handbook]. Moscow, Vysshaya shkola, 1965. 467 p.
Grigor’yev I.S., Meylikhov I.Z. (ed.) Fizicheskiye velichiny: Spravochnik [Physical quantities: Handbook]. Moscow, Energoatomizdat, 1991. 1232 p.
Biderman V.L. Teoriya mekhanicheskikh kolebaniy [The theory of mechanical vibrations]. Moscow, Vysshaya shkola, 1980. 408 p.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.