On one version of the Godunov method for calculating elastoplastic deformations of a medium

Authors

  • Viktor Sergeyevich Surov South Ural State University (NRU)

DOI:

https://doi.org/10.7242/1999-6691/2021.14.1.3

Keywords:

elastic-plastic deformations, hybrid Godunov method, Riemann linearized solver

Abstract

Godunov's hybrid method suitable for numerical calculation of elastoplastic deformation of a solid body within the framework of the classical Prandtl-Reis model with the non-barotropic state equation is described. Mises’ fluidity condition is used as a criterion for the transition from elastic to plastic state. A characteristic analysis of the model equations was carried out and their hyperbolicity was shown. It is noted that, if one takes the Maxwell-Cattaneo law instead of the Fourier law, then the Godunov hybrid method can be applied to calculate the deformation of a thermally conductive elastoplastic medium, since in this case the medium model is of a hyperbolic type. The algorithm for solving the systems in which there are equations that do not lead to divergence form is described in detail; Godunov's original method serves to integrate systems of equations represented in divergence form. When calculating stream variables on the faces of adjacent cells, a linearized Riemannian solver is used, the algorithm of which includes the right eigenvectors of the model equations. In the proposed approach, the equations written in divergence form look like finite-volume formulas, and others that do not lead to divergence form look like finite-difference relations. To illustrate the capabilities of the Godunov hybrid method, several one- and two-dimensional problems were solved, in particular, the problem of hitting an aluminum sample against a rigid barrier. It is shown that, depending on the rate of interaction, either single-wave or two-wave reflections described in the literature can be implemented with an elastic precursor.

Downloads

Download data is not yet available.

References

Abuzyarov M. Kh, Bazhenov V.G., Kotov V.L., Kochetkov A.V., Krylov S.V., Feldgun V.R. A Godunov-type method in dynamics of elastoplastic media. Comput. Math. Math. Phys., 2000, vol. 40, pp. 900-913.

Aganin A.A., Khismatullina N.A. Raschet voln v uprugoplasticheskom tele [Computation of waves in elastic-plastic body]. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2018, vol. 160, no. 3, pp. 435-447.

Menshov I.S., Mischenko A.B., Serejkin A.A. Numerical modeling of elastoplastic flows by the Godunov method on moving Eulerian grids. Math. Models Comput. Simul., 2014, vol. 6, pp. 127-141. https://doi.org/10.1134/S2070048214020070">https://doi.org/10.1134/S2070048214020070

Godunov S.K., Zabrodin A.V., Ivanov M.Ya., Krayko A.N., Prokopov G.P. Chislennoye resheniye mnogomernykh zadach gazovoy dinamiki [Numerical solution of multidimensional problems of gas dynamics]. Moscow, Nauka, 1976. 400 p.

Surov V.S. Calculation of heat-conducting vapor–gas–drop mixture flows. Numer. Analys. Appl., 2020, vol. 13, pp. 165-179. https://doi.org/10.1134/S199542392002007X">https://doi.org/10.1134/S199542392002007X

Toro E.F. Riemann solvers with evolved initial condition. Int. J. Numer. Meth. Fluid., 2006, vol. 52, pp. 433-453. https://doi.org/10.1002/fld.1186">https://doi.org/10.1002/fld.1186

Surov V.S. The Godunov method for calculating multidimensional flows of a one-velocity multicomponent mixture. J. Eng. Phys. Thermophy., 2016, vol. 89, pp. 1227-1240. https://doi.org/10.1007/s10891-016-1486-5">https://doi.org/10.1007/s10891-016-1486-5

Surov V.S. On a method of approximate solution of the Riemann problem for a one-velocity flow of a multicomponent mixture. J. Eng. Phys. Thermophy., 2010, vol. 83, pp. 373-379. https://doi.org/10.1007/s10891-010-0354-y">https://doi.org/10.1007/s10891-010-0354-y

Surov V.S. Hyperbolic model of a single-speed, heat-conductive mixture with interfractional heat transfer. High Temp., 2018, vol. 56, pp. 890-899. https://doi.org/10.1134/S0018151X1806024X">https://doi.org/10.1134/S0018151X1806024X

Fomin V.M. (ed.) Vysokoskorostnoye vzaimodeystviye tel [High-speed interaction of bodies]. Novosibirsk, Izdatel’stvo SO RAN, 1999. 600 p.

Wilkins M.L. Calculation of elastic-plastic flow. Fundamental methods in hydrodynamics, ed. B.J. Alder, S. Fernbach, M. Rotenberg. Academic Press, 1964. Pp. 211-263.

Kulikovskiy A.G., Pogorelov N.V., Semenov A.Yu. Matematicheskiye voprosy chislennogo resheniya giperbolicheskikh sistem uravneniy [Mathematical problems in the numerical solution of hyperbolic systems of equations]. Moscow, Fizmatlit, 2012. 607 p.

Surov V.S. On hyperbolization of a number of continuum mechanics models. J. Eng. Phys. Thermophy., 2019, vol. 92, pp. 1302-1317. https://doi.org/10.1007/s10891-019-02046-x">https://doi.org/10.1007/s10891-019-02046-x

Surov V.S. Oblique impact of metal plates Combust. Explos. Shock Waves, 1988, vol. 24, pp. 747-752. https://doi.org/10.1007/BF00740423">https://doi.org/10.1007/BF00740423

Surov V.S. Modelirovaniye vysokoskorostnogo vzaimodeystviya kapel’ (struy) zhidkosti s pregradami, vozdushnymi udarnymi volnami [Modeling of high-speed interaction of liquid droplets (jets) with obstacles, air shock waves]. PhD Dissertation, Institute of Theoretical and Applied Mechanics SB RAS, Chelyabinsk, 1993. 160 p.

Surov V.S. Interaction of shock waves with bubble-liquid drops. Tech. Phys., 2001, vol. 46, pp. 662-667. https://doi.org/10.1134/1.1379630">https://doi.org/10.1134/1.1379630

Published

2021-03-30

Issue

Section

Articles

How to Cite

Surov, V. S. (2021). On one version of the Godunov method for calculating elastoplastic deformations of a medium. Computational Continuum Mechanics, 14(1), 30-39. https://doi.org/10.7242/1999-6691/2021.14.1.3