Refining rheological model for description of linear and nonlinear viscoelasticity of polymer systems

Authors

  • Aleksandr Andreyevich Laas Altai State University
  • Mariya Aleksandrovna Makarova Altai State Technical University named after I.I. Polzunov
  • Anzhela Sergeyevna Malygina Altai State Technical University named after I.I. Polzunov
  • Gleb Olegovich Rudakov Altai State Technical University named after I.I. Polzunov
  • Grigoriy Vladimirovich Pyshnograi Altai State University; Altai State Technical University named after I.I. Polzunov

DOI:

https://doi.org/10.7242/1999-6691/2021.14.1.2

Keywords:

rheology, polymers, mesoscopic approach, viscoelasticity, nonlinear effects, simple shear, uniaxial elongation, solutions, melts, multimode rheological model

Abstract

The article reviews the current mesoscopic modeling of flows for polymer solutions and melts of various structures. It also demonstrates the unified structure of the rheological constitutive relation, up to a certain dissipative function. Linear and nonlinear effects are considered for the simple shear and uniaxial tension of polymer melts based on the modified Vinogradov and Pokrovskii rheological model. The model can describe with adequate accuracy the linear viscoelasticity of fluid polymer systems, as well as transient processes at the shear flow and uniaxial elongation. It was compared with other experimental data for the melt of an industrial polyethylene sample. The nonlinear viscoelastic response of a polymer material was modeled at large periodic deformations. The calculation results were obtained via the Runge-Kutta approach with in-line subprograms of MATLAB IT environment. They were later compared with the experimental data for the solution of polyethylene oxide in dimethyl sulfoxide. The nonlinear behavior of the polymer sample manifested itself in the distortion of the viscoelastic response of the material at sinusoidal oscillations. In this case the shear stresses are no longer the correct harmonics and a "step" appears at the leading edge of the response. Besides, their amplitude is not proportional to the amplitude of the shift. The paper also considers the superposition of the oscillating shear flow on the simple shear. The distortion of the viscoelastic response is observed here though, unlike the high-amplitude periodic deformation, the curvatures of the upper and lower half-waves of the response differ. Since there is still no experimental data for this case, this work expects to encourage the researchers working in the field of nonlinear viscoelastic properties of polymer solutions and melts for further endeavors.

Downloads

Download data is not yet available.

References

Pokrovskii V.N. The mesoscopic theory of polymer dynamics. Springer, 2010. 256 p. https://doi.org/10.1007/978-90-481-2231-8">https://doi.org/10.1007/978-90-481-2231-8

Malkin A.Ya., Isaev A.I. Reologiya: kontseptsiya, metody, prilozheniya [Rheology: concepts, methods, applications]. St. Petersburg, Profession, 2007. 560 p.

Giesekus H. A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility. J. Non-Newtonian Fluid Mech., 1982, vol. 11, pp. 69-109. https://doi.org/10.1016/0377-0257(82)85016-7">https://doi.org/10.1016/0377-0257(82)85016-7

Leonov A.I. Analysis of simple constitutive equations for viscoelastic liquids. J. Non-Newtonian Fluid Mech., 1992, vol. 42, pp. 323-350. https://doi.org/10.1016/0377-0257(92)87017-6">https://doi.org/10.1016/0377-0257(92)87017-6

Inkson N.J., McLeish T.C.B., Harlen O.G., Groves D.J. Predicting low density polyethylene melt rheology in elongational and shear flows with “pom-pom” constitutive equations. J. Rheol., 1999, vol. 43, pp. 873-896. https://doi.org/10.1122/1.551036">https://doi.org/10.1122/1.551036

Altukhov Yu.A., Golovicheva I.E., Psyhnograi G.V. Molecular approach in linear polymer dynamics: Theory and numerical experiment. Fluid Dyn., 2000, vol. 35, pp. 1-9. https://doi.org/10.1007/BF02698779">https://doi.org/10.1007/BF02698779

Thien N.P., Tanner R.I. A new constitutive equation derived from network theory. J. Non-Newtonian Fluid Mech., 1977, vol. 2, pp. 353-365. https://doi.org/10.1016/0377-0257(77)80021-9">https://doi.org/10.1016/0377-0257(77)80021-9

Verbeeten W.M.H., Peters G.W.M., Baaijens F.P.T. Differential constitutive equations for polymer melts: The extended Pom-Pom model. J. Rheol., 2001, vol. 45, pp. 823-843. https://doi.org/10.1122/1.1380426">https://doi.org/10.1122/1.1380426

Bishko G., McLeish T.C.B., Harlen O.G., Larson R.G. Theoretical molecular rheology of branched polymers in simple and complex flows: The Pom-Pom model. Phys. Rev. Lett., 1997, vol. 79, pp. 2352-2355. https://doi.org/10.1103/PhysRevLett.79.2352">https://doi.org/10.1103/PhysRevLett.79.2352

Ilyin S.O., Malkin A.Ya., Kulichikhin V.G. Application of large amplitude oscillatory shear for the analysis of polymer material properties in the nonlinear mechanical behavior. Polym. Sci. Ser. A., 2014, vol. 56, pp. 98-110. https://doi.org/10.1134/S0965545X14010039">https://doi.org/10.1134/S0965545X14010039

Zelenkova J., Pivokonsky R., Filip P. Two ways to examine differential constitutive equations: Initiated on steady or initiated on unsteady (LAOS) shear characteristics. Polymers, 2017, vol. 9, 205. https://doi.org/10.3390/polym9060205">https://doi.org/10.3390/polym9060205

Koshelev K.B., Pyshnograi G.V., Tolstykh M.Yu. odeling of the three-dimensional flow of polymer melt in a convergent channel of rectangular cross-section. Fluid Dyn., 2015, vol. 50, pp. 315-321. https://doi.org/10.1134/S0015462815030011">https://doi.org/10.1134/S0015462815030011

Merzlikina D.A., Pyshnograi G.V., Pivokonskii R., Filip P. Rheological model for describing viscometric flows of melts of branched polymers. J. Eng. Phys. Thermophy., 2016, vol. 89, pp. 652-659. https://doi.org/10.1007/s10891-016-1423-7">https://doi.org/10.1007/s10891-016-1423-7

Gusev A.S., Makarova M.A., Pyshnograi G.V. Mesoscopic equation of state of polymer systems and description of the dynamic characteristics based on it. J. Eng. Phys. Thermophy., 2005, vol. 78, pp. 892-898. https://doi.org/10.1007/s10891-006-0009-1">https://doi.org/10.1007/s10891-006-0009-1

Pyshnograi G.V., Gusev A.S., Pokrovskii V.N. Constitutive equations for weakly entangled linear polymers. J. Non-Newtonian Fluid Mech., 2009, vol. 164, pp. 17-28. https://doi.org/10.1016/j.jnnfm.2009.07.003">https://doi.org/10.1016/j.jnnfm.2009.07.003

Pivokonsky R., Filip P., Pyshnograi G. On the reduction of nonlinear parameters in the eXtended Pom-Pom differential constitutive model. Acta Technica, 2018, vol. 63, pp. 1-15.

MacDonald I.F., Marsh B.D., Ashare E. Rheological behavior for large amplitude oscillatory shear motion. Chem. Eng. Sci., 1969, vol. 24, pp. 1615-1625. https://doi.org/10.1016/0009-2509(69)80101-6">https://doi.org/10.1016/0009-2509(69)80101-6

Onogi S., Masuda T., Matsumoto T. Nonlinear behavior of viscoelastic materials. I. Disperse systems of polystyrene solution and carbon black. Trans. Soc. Rheol., 1970, vol. 14, pp. 275-294. https://doi.org/10.1122/1.549190">https://doi.org/10.1122/1.549190

Dodge J.S., Krieger I.M. Oscillatory shear of nonlinear fluids. I. Preliminary investigation. Trans. Soc. Rheol., 1971, vol. 15, pp. 589-601. https://doi.org/10.1122/1.549236">https://doi.org/10.1122/1.549236

Matsumoto T., Segawa Y., Warashina Y., Onogi S. Nonlinear behavior of viscoelastic materials. II. The method of analysis and temperature dependence of nonlinear viscoelastic functions. Trans. Soc. Rheol., 1973, vol. 17, pp. 47-62. https://doi.org/10.1122/1.549319">https://doi.org/10.1122/1.549319

Komatsu H., Mitsui T., Onogi S. Nonlinear viscoelastic properties of semisolid emulsions. Trans. Soc. Rheol., 1973, vol. 17, pp. 351-364. https://doi.org/10.1122/1.549285">https://doi.org/10.1122/1.549285

Tee T.T., Dealy J.M. Nonlinear viscoelasticity of polymer melts. Trans. Soc. Rheol., 1975, vol. 19, pp. 595-615. https://doi.org/10.1122/1.549387">https://doi.org/10.1122/1.549387

Cho K.S., Hyun K., Ahn K.H., Lee S.J. A geometrical interpretation of large amplitude oscillatory shear response. J. Rheol., 2005, vol. 49, pp. 747-758. https://doi.org/10.1122/1.1895801">https://doi.org/10.1122/1.1895801

Klein C., Venema P., Sagis L., van der Linden E. Rheological discrimination and characterization of carrageenans and starches by Fourier transform-rheology in the non-linear viscous regime. J. Non-Newtonian Fluid Mech., 2008, vol. 151, pp. 145-150. https://doi.org/10.1016/j.jnnfm.2008.01.001">https://doi.org/10.1016/j.jnnfm.2008.01.001

Simmons J.M. Dinamic modulus polyisobutylene solutions in superposed steady shear flow. Rheol. Acta, 1968, vol. 7, pp. 184-188. https://doi.org/10.1007/BF01982380">https://doi.org/10.1007/BF01982380

Faitel'son L.A., Yakobson É.É. Components of the complex modulus during the periodic shear flow of a viscoelastic fluid. Mech. Compos. Mater., 1981, vol. 17, pp. 193-202. https://doi.org/10.1007/BF01039136">https://doi.org/10.1007/BF01039136

Siddigui A.M., Hayat T., Asghar S. Periodic flows of a non-Newtonian fluid between two parallel plates. Int. J. Non Lin. Mech., 1999, vol. 34, pp. 895-899. https://doi.org/10.1016/S0020-7462(98)00063-8">https://doi.org/10.1016/S0020-7462(98)00063-8

Vermant J., Walker L., Moldenaers P., Mewis J. Orthogonal versus parallel superposition measurements. J. Non-Newtonian Fluid Mech., 1998, vol. 79, pp. 173-189. https://doi.org/10.1016/S0377-0257(98)00105-0">https://doi.org/10.1016/S0377-0257(98)00105-0

Wong C.M., Isaev A.I. Orthogonal superposition of small and large amplitude oscillations upon steady shear flow of polymer fluids. Rheol. Acta, 1989, vol. 28, pp. 176-189. https://doi.org/10.1007/BF01356978">https://doi.org/10.1007/BF01356978

Oldroyd J.G. On the formulation of rheological equations of state. Proc. R. Soc. Lond. A, 1950, vol. 200, pp. 523-541. https://doi.org/10.1098/rspa.1950.0035">https://doi.org/10.1098/rspa.1950.0035

Leonov A.I., Prokunin A.N. Nonlinear phenomena in flows of viscoelastic polymer fluids. Chapman and Hall, 1994. 475 p. https://doi.org/10.1007/978-94-011-1258-1">https://doi.org/10.1007/978-94-011-1258-1

Maxwell J.C. IV. On the dynamical theory of gases. Phil. Trans. R. Soc., 1867, vol. 157, pp. 49-88. https://doi.org/10.1098/rstl.1867.0004">https://doi.org/10.1098/rstl.1867.0004

Pivokonsky R., Zatloukal M., Filip P. On the predictive/fitting capabilities of the advanced differential constitutive equations for branched LDPE melts. J. Non-Newtonian Fluid Mech., 2006, vol. 135, pp. 58-67. https://doi.org/10.1016/j.jnnfm.2006.01.001">https://doi.org/10.1016/j.jnnfm.2006.01.001

Pokrovskii V.N. Dynamics of weakly-coupled linear macromolecules. Sov. Phys. Usp., 1992, vol. 35, pp. 384-399. https://doi.org/10.1070%2FPU1992v035n05ABEH002236">https://doi.org/10.1070%2FPU1992v035n05ABEH002236

Soulages J., Schweizer T., Venerusa D.C., Kröger M., Öttinger H.C. Lubricated cross-slot flow of a low density polyethylene melt. J. Non-Newtonian Fluid Mech., 2008, vol. 154, pp. 52-64. https://doi.org/10.1016/j.jnnfm.2008.02.007">https://doi.org/10.1016/j.jnnfm.2008.02.007

Thomson W.W. On the elasticity and viscosity of metals. Proc. R. Soc. Lond., 1865, vol. 14, pp. 289-297.

Pyshnograi G., Merzlikina D., Filip P., Pivokonsky R. Mesoscopic single and multi-mode rheological models for polymeric melts viscometric flows description. WSEAS Transactions on Heat and Mass Transfer, 2018, vol. 13, pp. 49-65.

Abbasi M., Ebrahimi N.G., Nadali M., Esfahani M.K. Elongational viscosity of LDPE with various structures: employing a new evolution equation in MSF theory. Rheol. Acta, 2012, vol. 51, pp. 163-177. https://doi.org/10.1007/s00397-011-0572-z">https://doi.org/10.1007/s00397-011-0572-z

Pokrovsky V.N., Pyshnograi G.V. Simple forms of the defining equation of concentrated solutions and polymer melts as a consequence of the molecular theory of viscoelasticity. Fluid Dyn., 1991, vol. 26, pp. 58-64. https://doi.org/10.1007/BF01050113">https://doi.org/10.1007/BF01050113

Altukhov Yu.A., Gusev A.S., Pyshnogray G.V., Koshelev K.B. Vvedeniye v mezoskopicheskuyu teoriyu tekuchikh polimernykh sistem [Introduction to the mesoscopic theory of fluid polymer systems]. Barnaul, AltGPA, 2012. 121 p.

Pyshnograi G.V., Pokrovsky V.N., YanovskyYu.G., Karnet Yu.N., Obraztsov I.F. Opredelyayushcheye uravneniye nelineynykh vyazkouprugikh (polimernykh) sred v nulevom priblizhenii po parametram molekulyarnoy teorii i sledstviya dlya sdviga i rastyazheniya [Constitutive equation of non-linear viscoelastic (polymer) media in nought approximation by parameter of molecular theory and conclusions for shear and extension]. Dokl. Akad. Nauk, 1994, vol. 339, no. 5, pp. 612-615.

Leonov A.I. A brief introduction to the rheology of polymeric fluids. Coxmoor Publishing Company, 2008. 257 p.

Golovicheva I.E., Zinovich S.A., Pyshnograi G.V. Effect of the molecular mass on the shear and longitudinal viscosity of linear polymers. J. Appl. Mech. Tech. Phys., 2000, vol. 41, pp. 347-352. https://doi.org/10.1007/BF02465279">https://doi.org/10.1007/BF02465279

Rouse P.E. A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J. Chem. Phys., 1953, vol. 21, pp. 1272-1280. https://doi.org/10.1063/1.1699180">https://doi.org/10.1063/1.1699180

Graessley W.W. The entanglement concept in polymer phenology. Springer-Verlag Berlin Heidelberg, 1974. 182 p. https://doi.org/10.1007/BFb0031036">https://doi.org/10.1007/BFb0031036

Makarova M.A., Malygina A.S., Pyshnograi G.V., Rudakov G.O. Modeling of rheological properties of polyethylene melts at their uniaxial tension. Vychisl. mekh. splosh. sred – Computational Continuum Mechanics, 2020, vol. 13, no. 1, pp. 73-82. https://doi.org/10.7242/1999-6691/2020.13.1.6">https://doi.org/10.7242/1999-6691/2020.13.1.6

Pyshnograi G.V., Cherpakova N.A., Al Joda H.N.A. Special features of nonlinear behavior of a polymer solution on large periodic deformations. J. Eng. Phys. Thermophy., 2020, vol. 93, pp. 617-625. https://doi.org/10.1007/s10891-020-02159-8">https://doi.org/10.1007/s10891-020-02159-8

Kuznetsova Yu.L., Skul’skiy O.I. Effect of different flows on the shear branding of a liquid with a non-monotonic flow curve. J. Appl. Mech. Tech. Phy., 2019, vol. 60, pp. 22-30. https://doi.org/10.1134/S0021894419010048">https://doi.org/10.1134/S0021894419010048

Kuznetsova Yu.L., Skulskiy O.I., Pyshnograi G.V. Presure driven flow of a nonlinear viscoelastic fluid in a plane channel. Vychisl. mekh. splosh. sred – Computational Continuum Mechanics, 2010, vol. 3, no. 2, pp. 55-69. https://doi.org/10.7242/1999-6691/2010.3.2.17">https://doi.org/10.7242/1999-6691/2010.3.2.17

Curtis D.J., Badiei N., Holder A., Claypole J., Deganello D., Brown M.R., Lawrence M.J., Evans P.A., Williams P.R., Hawkins K. Assessment of the stress relaxation characteristics of critical gels formed under unidirectional shear flow by controlled stress parallel superposition rheometry. J. Non-Newtonian Fluid Mech., 2015, vol. 222, pp. 227-233. https://doi.org/10.1016/j.jnnfm.2014.12.004">https://doi.org/10.1016/j.jnnfm.2014.12.004

Altukhov Yu.A., Pokrovskii V.N., Pyshnograi G.V. On the difference between weakly and strongly entangled linear polymer. J. Non-Newtonian Fluid Mech., 2004, vol. 121, pp. 73-86. https://doi.org/10.1016/j.jnnfm.2004.05.001">https://doi.org/10.1016/j.jnnfm.2004.05.001

Rolón-Garrido V.H., Pivokonsky R., Filip P., Zatloukal M., Wagner M.H. Modelling elongational and shear rheology of two LDPE melts. Rheol. Acta, 2009, vol. 48, pp. 691-697. https://doi.org/10.1007/s00397-009-0366-8">https://doi.org/10.1007/s00397-009-0366-8

Published

2021-03-30

Issue

Section

Articles

How to Cite

Laas, A. A., Makarova, M. A., Malygina, A. S., Rudakov, G. O., & Pyshnograi, G. V. (2021). Refining rheological model for description of linear and nonlinear viscoelasticity of polymer systems. Computational Continuum Mechanics, 14(1), 12-29. https://doi.org/10.7242/1999-6691/2021.14.1.2