Nonlinear convection regimes of a ternary mixture in a two-layer porous medium

Authors

  • Nadezhda Alekseyevna Zubova Institute of Continuous Media Mechanics UB RAS
  • Tat’yana Petrovna Lyubimova Institute of Continuous Media Mechanics UB RAS; Perm National Research State University

DOI:

https://doi.org/10.7242/1999-6691/2021.14.1.10

Keywords:

convection, diffusion, thermal diffusion, hydrocarbon mixtures, porous medium

Abstract

Numerical experiments have been performed to study the onset and nonlinear regimes of convection of a ternary mixture of methane (35%), ethane (35%), and butane (30%) in a horizontally elongated rectangular region of a porous medium under the action of a geothermal gradient. The region has rigid, impermeable boundaries and is divided into two horizontal layers with equal porosity but different permeability and having the heights in ratio 1:3. The values of medium porosity and permeability are chosen close to those of real media, such as sands, sandstones or limestones. The components of the mixture belong to the main groups of chemical compounds present in oil and gas fields. The configuration under study is a model of hydrocarbon field. The calculations are carried out for the cases when the value of permeability of the upper layer is higher than that of the lower one and, conversely, when the lower layer is more permeable than the upper one. The rest of the parameters of the porous medium are considered to be the same in the entire computational domain. The problem is solved within the framework of the Darcy-Boussinesq model taking into account the effect of thermal diffusion. The temporal evolution of the local characteristics of the flow, the structure of the forming flow, and the distribution of the mixture components is evaluated. Analysis of the data shows that in the case of a more permeable narrow layer, the onset of convection has a local character. The flow arises in a more permeable layer and, as soon as convection develops, it begins to penetrate into a less permeable layer. However, the centers of the forming vortices are noticeably shifted towards the more permeable layer. Similar vortex displacements are observed in a thick layer with higher permeability, yet convection, in this case, is of the "large-scale" character.

Downloads

Download data is not yet available.
Supporting Agencies
Работа выполнена при финансовой поддержке Российского научного фонда (проект № 20-71-00147).

References

Lyubimova TP., Lepikhin A.P., Parshakova Ya.N., Tsiberkin K.B. Numerical modeling of liquid waste infiltration from storage facilities into surrounding groundwater and surface water bodies. Vychisl. mekh. splosh. sred – Computational Continuum Mechanics, 2015, vol. 8, no. 3, pp. 310-318. http://dx.doi.org/10.7242/1999-6691/2015.8.3.26">http://dx.doi.org/10.7242/1999-6691/2015.8.3.26

Lyubimova T.P., Lyubimov D.V., Baydina D.T., Kolchanova E.A., Tsiberkin K.B. Instability of plane-parallel flow of incompressible liquid over a saturated porous medium. Phys. Rev. E, 2016, vol. 94, 013104. http://dx.doi.org/10.1103/PhysRevE.94.013104">http://dx.doi.org/10.1103/PhysRevE.94.013104

Collell J., Galliero G., Vermorel R., Ungerer P., Yiannourakou M., Montel F., Pujol M. Transport of multicomponent hydrocarbon mixtures in shales organic matter by molecular simulations. J. Phys. Chem. C, 2015, vol. 119, pp. 22587-22595. http://dx.doi.org/10.1021/acs.jpcc.5b07242">http://dx.doi.org/10.1021/acs.jpcc.5b07242

Maryshev B., Lyubimova T., Lyubimov D. Two-dimensional thermal convection in porous enclosure subjected to the horizontal seepage and gravity modulation. Phys. Fluid., 2013, vol. 25, 084105. http://dx.doi.org/10.1063/1.4817375">http://dx.doi.org/10.1063/1.4817375

Barvier E. Geothermal energy technology and current status: an overview. Renew. Sustain. Energ. Rev., 2002, vol. 6,
pp. 3-65. https://doi.org/10.1016/S1364-0321(02)00002-3">https://doi.org/10.1016/S1364-0321(02)00002-3

Charrier-Mojtabi M.C., Elhajjar B., Mojtabi A. Analytical and numerical stability analysis of Soret-driven convection in a horizontal porous layer. Phys. Fluid., 2007, vol. 19, 124104. https://doi.org/10.1063/1.2821460">https://doi.org/10.1063/1.2821460

Ryzhkov I.I., Shevtsova V.M. On thermal diffusion and convection in multicomponent mixtures with application to the thermogravitational column. Phys. Fluid., 2007, vol. 19, 027101. https://doi.org/10.1063/1.2435619">https://doi.org/10.1063/1.2435619

Benano-Melly L.B., Caltagirone J.-P., Faissat B., Montel F., Costeseque P. Modeling Soret coefficient measurement experiments in porous media considering thermal and solutal convection. Int. J. Heat Mass Tran., 2001, vol. 44, pp. 1285-1297. https://doi.org/10.1016/S0017-9310(00)00183-6">https://doi.org/10.1016/S0017-9310(00)00183-6

Lyubimova T., Zubova N. Nonlinear regimes of the Soret-induced convection of ternary fluid in a square porous cavity. Transp. Porous Med., 2019, vol. 127, pp. 559-572. https://doi.org/10.1007/s11242-018-1211-2">https://doi.org/10.1007/s11242-018-1211-2

Lyubimova T.P., Zubova N.A. Onset and nonlinear regimes of convection of ternary mixture in a rectangular porous cavity taking into account Soret effect. Vychisl. mekh. splosh. sred – Computational Continuum Mechanics, 2019, vol. 12, no. 3, pp. 249-262. https://doi.org/10.7242/1999-6691/2019.12.3.21">https://doi.org/10.7242/1999-6691/2019.12.3.21

Bonté D., Van Wees J.-D., Verweij J.M. Subsurface temperature of theonshore Netherlands: new temperature dataset and modelling. Geol. Mijnbouw, 2012, vol. 91, pp. 491-515. https://doi.org/10.1017/S0016774600000354">https://doi.org/10.1017/S0016774600000354

Pasquale V., Chiozzi P., Verdoya M. Evidence for thermal convection in the deep carbonate aquifer of the eastern sector of the Po Plain, Italy. Tectonophysics, 2013, vol. 594, pp. 1-12. https://doi.org/10.1016/j.tecto.2013.03.011">https://doi.org/10.1016/j.tecto.2013.03.011

Guillou-Frottier L., Carré C., Bourgine B., Bouchot V., Genter A. Structure of hydrothermal convection in the Upper Rhine Graben as inferred from corrected temperature data and basin-scale numerical models. J. Volcanol. Geoth. Res., 2013, vol. 256, pp. 29-49. https://doi.org/10.1016/j.jvolgeores.2013.02.008">https://doi.org/10.1016/j.jvolgeores.2013.02.008

Lipsey L., Pluymaekers M., Goldberg T., van Oversteeg K., Ghazaryan L., Cloetingh S., van Wees J.-D. Numerical modelling of thermal convection in the Luttelgeest carbonate platform, the Netherlands. Geothermics, 2016, vol. 64, pp. 135-151. https://doi.org/10.1016/j.geothermics.2016.05.002">https://doi.org/10.1016/j.geothermics.2016.05.002

Nasrabadi H., Hoteit H., Firoozabadi A. An analysis of species separation in thermogravitational column filled with porous media. Transp. Porous Med., 2007, vol. 67, pp. 473-486. https://doi.org/10.1007/s11242-006-9037-8">https://doi.org/10.1007/s11242-006-9037-8

Larabi M.A., Mutschler D., Mojtabi A. Thermal gravitational separation of ternary mixture n‑dodecane/isobutylbenzene/tetralin components in a porous medium. J. Chem. Phys., 2016, vol. 144, 244902. https://doi.org/10.1063/1.4954244">https://doi.org/10.1063/1.4954244

Abahri O., Sadaoui D., Mansouri K., Mojtabi A., Mojtabi M.C. Thermogravitational separation in horizontal annular porous cell. Mechanics & Industry, 2017, vol. 18, 106. https://doi.org/10.1051/meca/2015115">https://doi.org/10.1051/meca/2015115

Soboleva E. Density-driven convection in an inhomogeneous geothermal reservoir. Int. J. Heat Mass Tran., 2018, vol. 127, pp. 784-798. https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.019">https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.019

Gubkin I.M. Ucheniye o nefti [The doctrine of oil]. Moscow, Nauka, 1975. 387 p.

Wangen M., Throndsen T. Simple 3-D modeling of hydrocarbon migration. Multidimensional basin modeling, ed. S. Du¨ppenbecker, R. Marzi. AAPG/Datapages Discovery Series, 2003. Pp. 243-253.

Wen B., Akhbar D., Zhang L., Hesse M.A. Convective carbon dioxide dissolution in a closed porous medium at low pressure. J. Fluid Mech., 2018, vol. 854, pp. 56-87. https://doi.org/10.1017/jfm.2018.622">https://doi.org/10.1017/jfm.2018.622

Nield D.A., Bejan A. Convection in porous media. Springer, 2013. 778 p. https://doi.org/10.1007/978-1-4614-5541-7">https://doi.org/10.1007/978-1-4614-5541-7

De Paoli M., Zonta F., Soldati A. Dissolution in anisotropic porous media: Modelling convection regimes from onset to shutdown. Phys. Fluid., 2017, vol. 29, 026601. https://doi.org/10.1063/1.4975393">https://doi.org/10.1063/1.4975393

Nield D.A., Kuznetsov A.V. The onset of convection in an anisotropic heterogeneous porous medium: A new hydrodynamic boundary condition. Transp. Porous Med., 2019, vol. 127, pp. 549-558. https://doi.org/10.1007/s11242-018-1210-3">https://doi.org/10.1007/s11242-018-1210-3

Soboleva E. Numerical investigations of haline-convective flows of saline groundwater. J. Phys. Conf. Ser., 2017, vol. 891, 012104. https://doi.org/10.1088/1742-6596/891/1/012104">https://doi.org/10.1088/1742-6596/891/1/012104

Soboleva E. Numerical simulation of haline-convection in geothermal reservoirs. J. Phys. Conf. Ser., 2017, vol. 891, 012105. https://doi.org/10.1088/1742-6596/891/1/012105">https://doi.org/10.1088/1742-6596/891/1/012105

Zech A., Zehner B., Kolditz O., Attinger S. Impact of heterogeneous permeability distribution on the groundwater flow systems of a small sedimentary basin. J. Hydrol., 2016, vol. 532, pp. 90-101. https://doi.org/10.1016/j.jhydrol.2015.11.030">https://doi.org/10.1016/j.jhydrol.2015.11.030

Salibindla A.K.R., Subedi R., Shen V.C., Masuk A.U.M., Ni R. Dissolution-driven convection in a heterogeneous porous medium. J. Fluid Mech., 2018, vol. 857, pp. 61-79. https://doi.org/10.1017/jfm.2018.732">https://doi.org/10.1017/jfm.2018.732

Kocberber S., Collins R.E. SPE Annual Technical Conference and Exhibition. New Orleans, Louisiana, September 23-26, 1990. Pp. 175-201https://doi.org/10.2118/20547-MS">https://doi.org/10.2118/20547-MS

Ghorayeb K., Firoozabadi A. Modeling multicomponent diffusions and convection in porous media. SPE J., 2000, vol. 5, pp. 158-171. https://doi.org/10.2118/62168-PA">https://doi.org/10.2118/62168-PA

Ryzhkov I.I. Termodiffuziya v smesyakh: uravneniya, simmetrii, resheniya i ikh ustoychivost’ [Thermal diffusion in mixtures: equations, symmetries and solutions and their stability]. Novosibirsk: Izd-vo SO RAN, 2013. 215 p.

Lyubimova T., Zubova N. Onset and nonlinear regimes of ternary mixture convection in a square cavity. Eur. Phys. J. E, 2015, vol. 38, 19. https://doi.org/10.1140/epje/i2015-15019-2">https://doi.org/10.1140/epje/i2015-15019-2

Forster S., Bobertz B., Bohling B. Permeability of sands in the coastal areas of the southern Baltic Sea: mapping a grain-size related sediment property. Aquatic Geochemistry, 2003, vol. 9, pp. 171-190. https://doi.org/10.1023/B:AQUA.0000022953.52275.8b">https://doi.org/10.1023/B:AQUA.0000022953.52275.8b

Iscan A.G., Kok M.V. Porosity and permeability determinations in sandstone and limestone rocks using thin section analysis approach. Energy Sources, Part A, 2009, vol. 31, pp. 568-575. https://doi.org/10.1080/15567030802463984">https://doi.org/10.1080/15567030802463984

McKibbin R., O’Sullivan M.J. Onset of convection in a layered porous medium heated from below. J. Fluid Mech., 1980, vol. 96, pp. 375-393. https://doi.org/10.1017/S0022112080002170">https://doi.org/10.1017/S0022112080002170

McKibbin R., O’Sullivan M.J. Heat transfer in a layered porous medium heated from below. J. Fluid Mech., 1981, vol. 111, pp. 141-173. https://doi.org/10.1017/S0022112081002334">https://doi.org/10.1017/S0022112081002334

Published

2021-03-30

Issue

Section

Articles

How to Cite

Zubova, N. A., & Lyubimova, T. P. (2021). Nonlinear convection regimes of a ternary mixture in a two-layer porous medium. Computational Continuum Mechanics, 14(1), 110-121. https://doi.org/10.7242/1999-6691/2021.14.1.10