Plane longitudinal waves in a fluid-saturated porous medium with a nonlinear relationship between deformations and displacements of the liquid phase

Authors

  • Vladimir Ivanovich Erofeev Mechanical Engineering Research Institute of RAS
  • Anna Viktorovna Leonteva Mechanical Engineering Research Institute of RAS

DOI:

https://doi.org/10.7242/1999-6691/2021.14.1.1

Keywords:

porous medium (Biot medium), geometric nonlinearity, generalized Burgers equation, stationary shock wave, Riemann wave

Abstract

A mathematical model is presented to describe the propagation of a plane longitudinal wave in a fluid saturated porous medium, taking into account the geometric nonlinearity of the liquid component of the medium. The nonlinear relationship between deformations and displacements refines the classical Biot’s theory, within the framework of which a fluid saturated porous medium is considered. Evolutionary equations for the displacements of the skeleton of the medium and fluid in the pores are obtained. It is shown that, if the liquid is confined in the pores, then the wave propagation is described by an equation that generalizes the well-known Burgers equation and has a solution in the form of a stationary shock wave resulting from mutual compensation of the effects of nonlinearity and dissipation. The dependence of the width of the shock wave front on the viscosity of the fluid saturating the pores and the shock wave amplitude is determined. As the viscosity coefficient increases, the wave profile becomes steeper, i.e., the wave front width decreases. With an increase in the wave amplitude, the front width can either increase or decrease, depending on the other parameters of the original system. The limiting cases of the obtained generalized Burgers equation are analyzed with respect to the fluid viscosity parameter. If the liquid flows freely in the pores, then the system of evolutionary equations is reduced to a single equation of a simple wave, i.e., the propagation of a plane longitudinal wave in a porous medium can be described by the well-known equation of nonlinear wave dynamics - the Riemann equation. The equation describes the nonlinear waves, which are characterized by a steepening of the leading edge with subsequent overturning resulting from the growth of nonlinear effects in the absence of compensating factors such as dispersion and dissipation.

Downloads

Download data is not yet available.
Supporting Agencies
Работа выполнена при финансовой поддержке Российского научного фонда (грант № 20-19-00613).

References

Biot M.A. General theory of three-dimensional consolidation. J. Appl. Phys., 1941, vol. 12, pp. 155-164. https://doi.org/10.1063/1.1712886">https://doi.org/10.1063/1.1712886

Biot M.A. Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys., 1962, vol. 33, pp. 1482‑1498. https://doi.org/10.1063/1.1728759">https://doi.org/10.1063/1.1728759

Frenkel' Ya.I. K teorii seysmicheskikh i seysmoelektricheskikh yavleniy vo vlazhnoy pochve [To the theory of the seismic and seismoelectric phenomena in the damp soil]. Izv. AN SSSR. Ser. geogr. i geofiz. – Bulletin of the Academy of Sciences of the USSR. Geophysics Series, 1944, vol. 8, no. 4, pp. 134-149.

Gassmann F. On elasticity of porous media. https://citeseerx.ist.psu.edu/viewdoc/download?%20doi=10.1.1.48.9319&rep=rep1&type=pdf">https://citeseerx.ist.psu.edu/viewdoc/download? doi=10.1.1.48.9319&rep=rep1&type=pdf

Kosachevskii L.Ia. On the propagation of elastic waves in two-phase media. J. Appl. Math. Mech., 1959, vol. 23, pp. 1593‑1604. https://doi.org/10.1016/0021-8928(59)90015-2">https://doi.org/10.1016/0021-8928(59)90015-2

Nikolayevskiy V.N., Basniyev A.T., Gorbunov A.T., Zotov G.A. Mekhanika poristykh nasyshchennykh sred [Mechanics of porous saturated environments]. Moscow, Nedra, 1970. 339 p.

Nigmatulin R.I. Osnovy mekhaniki geterogennykh sred [Bases of mechanics of heterogeneous environments]. Moscow, Nauka, 1978. 336 p.

Coussy O. Poromechanics. Wiley, 2004. 312 p.

Coussy O. Mechanics and physics of porous solids. Wiley, 2010. 282 p.

Bykov V.G. Seysmicheskiye volny v poristykh nasyshchennykh porodakh [Seismic waves in porous saturated breeds]. Vladivostok, Dal'nauka, 1999. 108 p.

Schanz M. Wave propagation in viscoelastic and poroelastic continua: A boundary element approach. Springer, 2001. 170 p. https://doi.org/10.1007/978-3-540-44575-3">https://doi.org/10.1007/978-3-540-44575-3

Leclario Ph., Cohen-Tenoudji F., Aguirre-Puente J. Extension of Boit’s theory of waves propagation to frozen porous media. J. Acoust. Soc. Am., 1994, vol. 96, pp. 3753-3768. https://doi.org/10.1121/1.411336">https://doi.org/10.1121/1.411336

Zaslavsky Yu.M. On excitation efficiency of the fast and slow Biot waves in water and gas saturated media. Tekhnicheskaya akustika – Technical Acoustics, 2002, vol. 2, pp. 123-134.

Zaslavskii Yu.M. Characteristics of Biot waves produced by a vibration exciter in a fluid-saturated medium. Acoust. Phys., 2005, vol. 51, pp. 653-663. https://doi.org/10.1134/1.2130896">https://doi.org/10.1134/1.2130896

Markov M.G. Propagation of longitudinal elastic waves in a fluid-saturated porous medium with spherical inclusions. Acoust. Phys., 2005, vol. 51, pp. S115-S121. https://doi.org/10.1134/1.2133959">https://doi.org/10.1134/1.2133959

Abrashkin A.A., Averbakh V.S., Vlasov S.N., Zaslavskii Yu.M., Soustova I.A., Sudarikov R.A., Troitskaya Yu.I. A possible mechanism of the acoustic action on partially fluid-saturated porous media. Acoust. Phys., 2005, vol. 51, pp. S12-S22. https://doi.org/10.1134/1.2133949">https://doi.org/10.1134/1.2133949

Akulenko L.D., Nesterov S.V. Inertial and dissipative properties of a porous medium saturated with viscous fluid. Mech. Solids, 2005, vol. 40(1), pp. 90-98.

Nesterov S.V., Akulenko L.D. Dynamic model of a porous medium saturated with a viscous liquid. Dokl. Phys., 2005, vol. 50, pp. 211-214. https://doi.org/10.1134/1.1922564">https://doi.org/10.1134/1.1922564

Markov M.G. Rayleigh wave propagation along the boundary of a non-Newtonian fluid-saturated porous medium. Acoust. Phys., 2006, vol. 52, pp. 429-434. https://doi.org/10.1134/S1063771006040099">https://doi.org/10.1134/S1063771006040099

Hoa N.N., Tarlakovsky D.V. The kinematics of pertubation in a porous elastic half-plane object. MKMK – Mechanics of composite materials and structures, 2011, vol. 17, pp. 567-576.

Zaslavskii Yu.M., Zaslavskii V.Yu. Study of acoustic radiation during air stream filtration through a porous medium. Acoust. Phys., 2012, vol. 58, pp. 708-712. https://doi.org/10.1134/S1063771012060164">https://doi.org/10.1134/S1063771012060164

Igumnov L.A., Litvinchuk S.Yu., Tarlakovsky D.V., Lokteva N.A. Numerically modeling the dynamics of a compound poroelastic body. PPP – Problems of Strength and Plasticity, 2013, vol. 75, no. 2, pp. 130-136.

Igumnov L.A., Okonechnikov A.S., Tarlakovsky D.V., Belov A.A. Boundary-element analysis of waves over elastic, poro and viscoelastic half-spaces. PPP – Problems of Strength and Plasticity, 2013, vol. 75, no. 2, pp. 145-151.

Dang Q.G., Tarlakovsky D.V. Influence on the border of porous elastic half-space by tangent diaphragm of normal nonstationary axial symmetric loading. MKMK – Mechanics of composite materials and structures, 2014, vol. 20, no. 1, pp. 148-158.

Igumnov L.A., Amenitskii A.V., Belov A.A., Litvinchuk S.Yu., Petrov A.N. Numerical-analytic investigation of the dynamics of viscoelastic and porous elastic bodies. J. Appl. Mech. Tech. Phy., 2014, vol. 55, pp. 89-94. https://doi.org/10.1134/S002189441401012X">https://doi.org/10.1134/S002189441401012X

Poromechanics – A Tribute to Maurice A. Biot: Proceedings of the First Biot Conference on Poromechanics, ed. J.‑F. Thimus, Y. Abousleiman, A.H.-D. Cheng, O. Coussy, E. Detournay. Louvain la Neuve, Belgium, September 14-16, 1998. 648 p.

Poromechanics II: Proceedings of the Second Biot Conference on Poromechanics, ed. J.-L. Auriault, C. Geindrean, P. Royer, J.-F. Bloch, C. Boutin, L. Lewandovska. Grenoble, France, August 26-28, 2002. 955 p.

Poromechanics III – Biot Centennial (1905-2005): Proceedings of the Third Biot Conference on Poromechanics, ed. Y.N. Abousleiman, A.H.-D. Cheng, F.-J. Ulm. Norman, Oklahoma, USA, May 24-27, 2005. 828 p.

Poromechanics IV: Proceedings of the Fourth Biot Conference on Poromechanics, ed. H.I. Ling, A. Smyth, R. Betti. New York, USA, June 8-10, 2009. 1151 p.

Poromechanics V: Proceedings of the Fifth Biot Conference on Poromechanics, ed. C. Hellmich, B. Pichler, D. Adam. Vienna, Austria, July 10-12, 2013. 2605 p.

Gorodetskaya N.S. Volny v poristo-uprugikh nasyshchennykh zhidkost’yu sredakh [Waves in poroelastic fluid-saturated media]. Akustichniy visnik – Acoustic Bulletin, 2007, vol. 10, no. 2, pp. 43-63.

Mavko G., Mukeji T., Dvorkin J. The rock physics handbook. Tools for seismic analysis in porous media. Cambrige University Press, 2009. 524 p. https://doi.org/10.1017/CBO9780511626753">https://doi.org/10.1017/CBO9780511626753

Chrotiros N.P. Acoustics of the seabed as a poroelastic medium. Springer, 2017. 100 p. https://doi.org/10.1007/978-3-319-14277-7">https://doi.org/10.1007/978-3-319-14277-7

Rasolofosaon P.N.J. Importance of interface hydraulic condition on the generation of second bulk compressional wave in porous media. Appl. Phys. Lett., 1988, vol. 52, pp. 780-782. https://doi.org/10.1063/1.99282">https://doi.org/10.1063/1.99282

Berryman J.G. Elastic wave propagation in fluid-saturated porous media. J. Acoust. Soc. Am., 1981, vol. 69, pp. 416-424. https://doi.org/10.1121/1.385457">https://doi.org/10.1121/1.385457

Lebedev A.V. Analysis of surface waves in an elastic medium with a porous saturated layer. Radiophys. Quantum El., 2019, vol. 62, pp. 420-438. https://doi.org/10.1007/s11141-019-09988-5">https://doi.org/10.1007/s11141-019-09988-5

Nikolayev A.V., Galkin I.N. (eds.) Problemy nelineynoy seysmiki [Nonlinear seismic problems]. Moscow, Nauka, 1987. 257 p.

Erofeev V.I., Leont’eva A.V. Riemann and shock waves in a porous liquid-saturated geometrically nonlinear medium. J. Eng. Phys. Thermophy., 2020, vol. 93, pp. 1156-1162. https://doi.org/10.1007/s10891-020-02217-1">https://doi.org/10.1007/s10891-020-02217-1

Ryskin N.M., Trubetskov D.I. Nelineynyye volny [Nonlinear Waves]. Moscow, Lenand, 2017. 312 p.

Rudenko O.V., Soluyan S.I. Teoreticheskiye osnovy nelineynoy akustiki [Theoretical foundations of nonlinear acoustics]. Moscow, Nauka, 1975. 288 p.

Whitham G.B. Linear and nonlinear waves. John Wiley & Sons, 1974. 636 p.

Erofeev V.I., Leontieva A.V., Malkhanov A.O. Stationary longitudinal thermoelastic waves and the waves of the rotation type in the non-linear micropolar medium. ZAMM, 2017, vol. 97, pp. 1064-1071. https://doi.org/10.1002/zamm.201600146">https://doi.org/10.1002/zamm.201600146

Naugolnykh K., Ostrovsky L. Nonlinear Wave Processes in Acoustics. Cambridge University Press, 1998. 298 p.

Bagdoyev A.G., Erofeyev V.I., Shekoyan A.V. Lineynyye i nelineynyye volny v dispergiruyushchikh sploshnykh sredakh [The linear and nonlinear waves in dispersive continuous media]. Moscow, Fizmatlit, 2009. 320 p.

Bagdoev A., Erofeyev V., Shekoyan A. Wave dynamics of generalized continua. Springer, 2016. 274 p. https://doi.org/10.1007/978-3-642-37267-4">https://doi.org/10.1007/978-3-642-37267-4

Published

2021-03-30

Issue

Section

Articles

How to Cite

Erofeev, V. I., & Leonteva, A. V. (2021). Plane longitudinal waves in a fluid-saturated porous medium with a nonlinear relationship between deformations and displacements of the liquid phase. Computational Continuum Mechanics, 14(1), 5-11. https://doi.org/10.7242/1999-6691/2021.14.1.1