Application of Wiedeburg linearization for solving the stability problem of a two-layer mixture with concentration-dependent diffusion

Authors

  • Dmitriy Anatol’yevich Bratsun Perm National Research Polytechnic University
  • Vladimir Aleksandrovich Vyatkin Perm National Research Polytechnic University

DOI:

https://doi.org/10.7242/1999-6691/2020.13.4.36

Keywords:

concentration-dependent diffusion, double diffusion instability, miscible liquids, Wiedeburg linearization

Abstract

In this paper, we consider the problem of the stability of an isothermal system of two miscible fluids in a gravity field. Fluids are aqueous solutions of non-reacting substances with different diffusion coefficients. At the very beginning, the solutions uniformly fill half-spaces, which are separated from each other by an infinitely thin horizontal contact surface. Such a configuration can be easily realized experimentally, although it is more difficult for theoretical analysis. We assume that the initial configuration of the system is statically stable. After the start of evolution, the solutions begin to mix, penetrating each other, and creating conditions for the development of the convective instability of double diffusion. An important complicating factor of the problem is the functional dependence of the diffusion coefficients of solutions on their concentration. In recent years, this effect has been actively studied, since its significant influence on convective stability has been proven experimentally. For simplicity, we assume that the diffusion coefficients of solutions depend linearly on concentration. The problem of the stability of a mixture includes the equation of motion in the Darcy and Boussinesq approximation, the continuity equation, and two transport equations for the concentrations. The solution to this problem in the absence of the effect of concentration-dependent diffusion is well known from the literature. If we take into accountsuch a dependence, then we have to deal with the problem of nonlinear diffusion, which can only be solved numerically. To find an analytical solution to the problem, we propose to apply the method of preliminary linearization of Wiedeburg (1890). The method is well known in the theory of thermal conductivity, although it was originally developed specifically for solutions of substances. In our case, we demonstrate that the conditions for convective stability of the base state can be obtained analytically. The comparative analysis of the discrepancy between the Wiedeburg solution and the numerical solution is given. Based on the closed-form analytical solution, we obtain a stability map for the problem under the consideration. We show how the effect of concentration-dependent diffusion affects stability.

Downloads

Download data is not yet available.
Supporting Agencies
Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 19-01-00621).

References

Gershuni G.Z., Zhukhovitsky E.M., Shikhov V.MStability of convective flow of fluid with temperature-dependent viscosity. High Temp., 1975, vol. 13, no. 4, pp. 700-705.

Thangam S., Chen C.F. Stability analysis of the convection of a variable viscosity fluid in an infinite vertical slot. Phys. Fluids, 1986, vol. 29, pp. 1367-1372. https://doi.org/10.1063/1.865702">https://doi.org/10.1063/1.865702

Gershuni G.Z., Zhukhovitskiy E.M., Nepomnyashchiy A.A. Ustoychivost’ konvektivnykh techeniy [Stability of convective flows]. Moscow, Nauka, 1989. 320 p.

Levich V.G. Physicochemical hydrodynamics. Prentice-Hall, 1962. 700 p.

Birikh R.V. Thermocapillary convection in a horizontal layer of liquid. J. Appl. Mech. Tech. Phys., 1966, vol. 7, pp. 43-44. https://doi.org/10.1007/BF00914697">https://doi.org/10.1007/BF00914697

Nepomnyashchy A.A., Velarde M.G., Colinet P. Interfacial phenomena and convection. Chapman and Hall/CRC, 2002. 365 p.

Zuev A.L., Kostarev K.GCertain peculiarities of the solutocapillary convection. Phys.-Usp., 2008, vol. 51, pp. 1027-1045. https://doi.org/10.1070/pu2008v51n10abeh006566">https://doi.org/10.1070/pu2008v51n10abeh006566

Ash R., Espenhahn S.E. Transport through a slab membrane governed by a concentration-dependent diffusion coefficient. III. Numerical solution of the diffusion equation: ‘early-time’ and ‘t’ procedures. J. Membr. Sci., 2000, vol. 180,
pp. 133-146. http://dx.doi.org/10.1016/S0376-7388(00)00530-5">http://dx.doi.org/10.1016/S0376-7388(00)00530-5

Bowen R.W., Williams P.M. Prediction of the rate of cross-flow ultrafiltration of colloids with concentration-dependent diffusion coefficient and viscosity – theory and experiment. Chem. Eng. Sci., 2001, vol. 56, pp. 3083-3099. http://dx.doi.org/10.1016/S0009-2509(00)00552-2">http://dx.doi.org/10.1016/S0009-2509(00)00552-2

Crank J. The mathematics of diffusion. Oxford University Press, 1975. 414 p.

Bratsun D., Kostarev K., Mizev A., Mosheva E. Concentration-dependent diffusion instability in reactive miscible fluids. Phys. Rev. E, 2015, vol. 92, 011003. http://dx.doi.org/10.1103/PhysRevE.92.011003">http://dx.doi.org/10.1103/PhysRevE.92.011003

Bratsun D.A., Stepkina O.S., Kostarev K.G., Mizev A.I., Mosheva E.A. Development of concentration-dependent diffusion instability in reactive miscible fluids under influence of constant or variable inertia. Microgravity Sci. Technol., 2016, vol. 28, pp. 575-585. http://dx.doi.org/10.1007/s12217-016-9513-x">http://dx.doi.org/10.1007/s12217-016-9513-x

Bratsun D.A. Internal density waves of shock type induced by chemoconvection in miscible reacting liquids. Tech. Phys. Lett., 2017, vol. 43, pp. 944-947. https://doi.org/10.1134/S1063785017100182">https://doi.org/10.1134/S1063785017100182

Bratsun D.A., Mosheva L.A. Peculiar properties of density wave formation in a two-layer system of reacting miscible liquids. Vychisl. mekh. splosh. sred – Computational Continuum Mechanics, 2018, vol. 11, no. 3, pp. 302-322. https://doi.org/10.7242/1999-6691/2018.11.3.23">https://doi.org/10.7242/1999-6691/2018.11.3.23

Stern M.E. The salt-fountain and thermohaline convection. Tellus, 1960, vol. 12, pp. 172-175. https://doi.org/10.3402/tellusa.v12i2.9378">https://doi.org/10.3402/tellusa.v12i2.9378

Turner J.S. Double-diffusive phenomena. Ann. Rev. Fluid Mech., 1974, vol. 6, pp. 37-54. http://dx.doi.org/10.1146/annurev.fl.06.010174.000345">http://dx.doi.org/10.1146/annurev.fl.06.010174.000345

Trevelyan P.M.J., Almarcha C., De Wit A. Buoyancy-driven instabilities of miscible two-layer stratifications in porous media and Hele-Shaw cells. J. Fluid Mech., 2011, vol. 670, pp. 38-65. https://doi.org/10.1017/S0022112010005008">https://doi.org/10.1017/S0022112010005008

Wiedeburg O. Ueber die Hydrodiffusion. Annalen der Physik, 1890, vol. 277, no. 12, pp. 675-711. https://doi.org/10.1002/andp.18902771204">https://doi.org/10.1002/andp.18902771204

Lykov A.V. Teoriya teploprovodnosti [Theory of heat conduction]. Moscow, Vysshaya shkola, 1989. 320 p.

Zuev A.L., Kostarev K.GCertain peculiarities of the solutocapillary convection. Phys.-Usp., 2008, vol. 51, pp. 1027-1045. https://doi.org/10.3367/UFNr.0178.200810d.1065">https://doi.org/10.3367/UFNr.0178.200810d.1065

Gershuni G.Z., Zhukhovitskii E.M. Convective Stability of Incompressible Fluids. Jerusalem, Keter Publishing House, 1976. 330 p.

Radko T. Double-diffusive convection. Cambridge University Press, 2013. 344 p. https://doi.org/10.1017/CBO9781139034173">https://doi.org/10.1017/CBO9781139034173

Gershuni G.Z., Zhukhovitsky E.M. On the convectional instability of a two-component mixture in a gravity field. J. Appl. Math. Mech., 1963, vol. 27, pp. 441-452. https://doi.org/10.1016/0021-8928(63)90012-1">https://doi.org/10.1016/0021-8928(63)90012-1

Nield D.A. Onset of thermohaline convection in a porous medium. Water Resour. Res., 1968, vol. 4, pp. 553-560. https://doi.org/10.1029/WR004i003p00553">https://doi.org/10.1029/WR004i003p00553

Huppert H.E., Manins P.C. Limiting conditions for salt-fingering at an interface. Deep Sea Res. Oceanogr. Abstr., 1973, vol. 20, pp. 315-323. https://doi.org/10.1016/0011-7471(73)90056-9">https://doi.org/10.1016/0011-7471(73)90056-9

Aitova E.V., Bratsun D.A., Kostarev K.G., Mizev A.I., Mosheva E.A. Convective instability in a two-layer system of reacting fluids with concentration-dependent diffusion. J. Appl. Mech. Tech. Phy., 2016, vol. 57, pp. 1226-1238. https://doi.org/10.1134/S0021894416070026">https://doi.org/10.1134/S0021894416070026

Tarunin E.L. Vychislitel'nyj eksperiment v zadachah svobodnoj konvekcii [Computational experiment in free convection problems]. Irkutsk, Izd-vo Irkut. un-ta, 1990. 228 p.

Published

2020-12-30

Issue

Section

Articles

How to Cite

Bratsun, D. A., & Vyatkin, V. A. (2020). Application of Wiedeburg linearization for solving the stability problem of a two-layer mixture with concentration-dependent diffusion. Computational Continuum Mechanics, 13(4), 459-470. https://doi.org/10.7242/1999-6691/2020.13.4.36