Verification of wide-range constitutive relations for elastic-viscoplastic materials using Taylor-Hopkinson test
DOI:
https://doi.org/10.7242/1999-6691/2020.13.4.35Keywords:
metals, alloys, dynamic loading, Hopkinson-Kolsky bar, Taylor test, elastic-viscoplastic constitutive relationsAbstract
The mathematical model of a solid with mesoscopic defects is validated. The proposed constitutive relations allow one to describe the deformation behavior of typical elastic-viscoplastic materials (metals and alloys) in a wide range of strain rates, temperatures and stresses. Methods for identifying unknown parameters of the model based on solving a number of independent optimization problems using data from independent experiments have been developed and implemented. For identification, we used both the results of a literature review and the experimental data obtained. The experiment study on high-speed collision of a cylindrical specimen with an obstacle in the form of a bar (Taylor-Hopkinson test) was carried out with registration of the temperature field during deformation. The experimental data were used to verify the model. For comparison, the calculations were performed in three-dimensional and axisymmetric statements. The formulated boundary value problems were solved numerically by the finite element method. The results of numerical calculations are in good agreement with the experimental data: the shape of the specimen after collision, as well as the measured temperature (mechanical energy dissipation during inelastic deformation), coincide. This confirms the adequacy of the developed mathematical model and indicates that it can be used to solve both fundamental and applied problems of solid mechanics. The analysis of parallelism efficiency has shown that the use of eight cores yields a five-fold acceleration and that, with a further increase in the number of cores (processors), this trend will continue.
Downloads
References
Taylor G.I. The use of flat-ended projectiles for determining dynamic yield stress. Proc. R. Soc. Lond. A, 1948, vol. 3, pp. 289-301. https://doi.org/10.1098/rspa.1948.0081">https://doi.org/10.1098/rspa.1948.0081
Bragov A.M., Konstantinov A.Yu., Lomunov A.K. Eksperimental’no-teoreticheskoye issledovaniye protsessov vysokoskorostnogo deformirovaniya i razrusheniya materialov razlichnoy fizicheskoy prirody s ispol’zovaniyem metoda Kol’skogo i ego modifikatsiy [Experimental and theoretical study of the processes of high-speed deformation and fracture of materials of various physical nature using the Kolsky method and its modifications]. Nizhny Novgorod, Publishing house of the Nizhny Novgorod State University named after N.I. Lobachevsky, 2018. 188 p.
Sen S., Banerjee B., Shaw A. Taylor impact test revisited: Determination of plasticity parameters for metals at high strain rate. Int. J. Solid. Struct., 2020, vol. 193-194, pp. 357-374. https://doi.org/10.1016/j.ijsolstr.2020.02.020">https://doi.org/10.1016/j.ijsolstr.2020.02.020
Bogomolov A.I., Gorel'skii V.A., Zelepugin S.A., Khorev I.E. Behavior of bodies of revolution in dynamic contact with a rigid wall. J. Appl. Mech. Tech. Phys., 1986, vol. 27, pp. 149-152. https://doi.org/10.1007/BF00911139">https://doi.org/10.1007/BF00911139
Chandola N., Revil-Baudard B., Cazacu O. Plastic deformation of high-purity α-titanium: Model development and validation using the Taylor cylinder impact test. J. Phys. Conf. Ser., 2016, vol. 734, 032048. https://doi.org/10.1088/1742-6596/734/3/032048">https://doi.org/10.1088/1742-6596/734/3/032048
Holt W.H., Mock W., Zerilli F.J., Clark J.B. Experimental and computational study of the impact deformation of titanium Taylor cylinder specimens. Mech. Mater., 1994, vol. 17, pp. 195-201. https://doi.org/10.1016/0167-6636(94)90059-0">https://doi.org/10.1016/0167-6636(94)90059-0
Rakvag K.G., Borvik T., Hopperstad O.S. A numerical study on the deformation and fracture modes of steel projectiles during Taylor bar impact tests. Int. J. Solid. Struct., 2014, vol. 51, pp. 808-821. https://doi.org/10.1016/j.ijsolstr.2013.11.008">https://doi.org/10.1016/j.ijsolstr.2013.11.008
Borodin E.N., Mayer A.E. Structural model of mechanical twinning and its application for modeling of the severe plastic deformation of copper rods in Taylor impact tests. Int. J. Plast., 2015, vol. 74, pp. 141-157. https://doi.org/10.1016/j.ijplas.2015.06.006">https://doi.org/10.1016/j.ijplas.2015.06.006
Bartkowski P., Keele M., Bruchey W. Proc. of the 19th International Symposium of Ballistics. Interlaken, Switzerland, May 7-11, 2001. Vol. 3, pp. 1577-1584.
Mocko W., Janiszewski J., Radziejewska J., Grazka M. Analysis of deformation history and damage initiation for 6082-T6 aluminium alloy loaded at classic and symmetric Taylor impact test conditions. Int. J. Impact Eng., 2015, vol. 75,
pp. 203-213. https://doi.org/10.1016/j.ijimpeng.2014.08.015">https://doi.org/10.1016/j.ijimpeng.2014.08.015
Wei G., Zhang W., Huang W., Ye N., Gao Y., Ni Y. Effect of strength and ductility on deformation and fracture of three kinds of aluminum alloys during Taylor tests. Int. J. Impact Eng., 2014, vol. 73, pp. 75-90. https://doi.org/10.1016/j.ijimpeng.2014.06.011">https://doi.org/10.1016/j.ijimpeng.2014.06.011
Belov G.V., Gusarov A.P., Markov V.A., Pusev V.A., Ovchinnikov A.F., Selivanov V.V., Sotskiy M.Yu. Primeneniye testa Teylora dlya issledovaniya dinamicheskikh mekhanicheskikh svoystv vysokoporistogo alyuminiyevogo splava [Application of the Taylor test to research dynamic mechanical properties of highly porous aluminum alloy]. Nauka i obrazovaniye: nauchnoye izdaniye MGTU im. N.E. Baumana – Science and Education of Bauman MSTU, 2012, no. 9, pp. 13-28. https://doi.org/10.7463/0912.0442058">https://doi.org/10.7463/0912.0442058
Kleiser G., Revil-Baudard B., Pasiliao C. High strain-rate plastic deformation of molybdenum: Experimental investigation, constitutive modeling and validation using impact tests. Int. J. Impact Eng., 2016, vol. 96, pp. 116-128. https://doi.org/10.1016/j.ijimpeng.2016.05.019">https://doi.org/10.1016/j.ijimpeng.2016.05.019
Zerilli F.J., Armstrong R.W. Dislocation-mechanics based constitutive relations for material dynamics calculations. J. App. Phys., 1987, vol. 61, pp. 1816-1825. https://doi.org/10.1063/1.338024">https://doi.org/10.1063/1.338024
Maudlin P.J., Bingert J.F., House J.W., Chen S.R. On the modeling of the Taylor cylinder impact test for orthotropic textured materials: experiments and simulations. Int. J. Plast., 1999, vol. 15, pp. 139-166. https://doi.org/10.1016/S0749-6419(98)00058-8">https://doi.org/10.1016/S0749-6419(98)00058-8
Efremov D.V., Uvarov S.V., Spivak L.V., Naimark O.B. Statistical patterns of deformation localization during plastic flow in the AMg6 alloy. POM – Letters on Materials, 2020, vol. 10, no. 1(37), pp. 38-42. https://doi.org/10.22226/2410-3535-2020-1-38-42">https://doi.org/10.22226/2410-3535-2020-1-38-42
Naimark O.B. Collective properties of defects ensembles and some nonlinear problems of plasticity and fracture. Phys. Mesomech., 2003, vol. 6, no. 4, pp. 39-63.
Bayandin Yu., Leont’ev V., Naimark O., Permjakov S. Experimental and theoretical study of universality of plastic wave fronts and structural scaling in shock loaded copper. J. Phys. IV France, 2006, vol. 134, pp. 1015-1021. https://doi.org/10.1051/jp4:2006134155">https://doi.org/10.1051/jp4:2006134155
Bayandin Yu.V., Saveleva N.V., Savinykh A.S., Naimark O.B. Numerical simulation of multiscale damage-failure transition and shock wave propagation in metals and ceramics. J. Phys. Conf. Ser., 2014, vol. 500, 152001. https://doi.org/10.1088/1742-6596/500/15/152001">https://doi.org/10.1088/1742-6596/500/15/152001
Saveleva N., Bayandin Yu., Naimark O. Wide-range simulation of elastoplastic wave fronts and failure of solids under high-speed loading. AIP Conference Proceedings, 2015, vol. 1683, 020201. https://doi.org/10.1063/1.4932891">https://doi.org/10.1063/1.4932891
Saveleva N.V., Bayandin Y.V., Savinykh A.S., Garkushin G.V., Lyapunova E.A., Razorenov S.V., Naimark O.B. Peculiarities of the elastic-plastic transition and failure in polycrystalline vanadium under shock-wave loading conditions. Tech. Phys. Lett., 2015, vol. 41, pp. 579-582. https://doi.org/10.1134/S1063785015060292">https://doi.org/10.1134/S1063785015060292
Bilalov D.A., Bayandin Yu.V., Naimark O.B Mathematical modeling of failure process of AlMg2.5 alloy in high and very high cycle fatigue. J. Appl. Mech. Tech. Phy., 2019, vol. 60, pp. 1209-1219. https://doi.org/10.1134/S0021894419070022">https://doi.org/10.1134/S0021894419070022
Kostina A.A., Bayandin Yu.V., Plekhov O.A. Modelirovaniye protsessa nakopleniya i dissipatsii energii pri plasticheskom deformirovanii metallov [Model of energy accumulation and dissipation in plastically deformed metals]. Fiz. Mezomekh. – Phys. Mesomech., 2014, vol. 17, no. 1, pp. 43-49.
Annin B.D., Korobeynikov S.N. Dopustimyye formy uprugikh zakonov deformirovaniya v opredelyayushchikh sootnosheniyakh uprugo-plastichnosti [Admissible forms of elastic deformation laws in the determining elastic-plasticity relations]. Sib. Zhurn. Industr. Matem. – Journal of Applied and Industrial Mathematics, 1998, vol. 1, no. 1, pp. 21-34.
Novokshanov R.S., Rogovoy A.A. O postroyenii evolyutsionnykh opredelyayushchikh uravneniy [On the construction of evolutionary constitutive equations]. Vestnik PNIPU. Matematicheskoye modelirovaniye sistem i protsessov – PNRPU Mechanics Bulletin, 2001, no. 9, pp. 103-109.
Glushak B.L., Ignatova O.N., Pushkov V.A., Novikov S.A., Girin A.S., Sinitsyn V.A. Dynamic deformation of aluminum alloy AMg-6 at normal and higher temperatures. J. Appl. Mech. Tech. Phy., 2000, vol. 41, pp. 1083-1086. https://doi.org/10.1023/A:1026662824249">https://doi.org/10.1023/A:1026662824249
Fridlyander I.N. (ed.) Mashinostroyeniye. Entsiklopediya. Tom II-3: Tsvetnyye metally i splavy. Kompozitsionnyye metallicheskiye materialy [Mechanical Engineering. Encyclopedia. Vol. II-3: Non-ferrous metals and alloys. Composite metallic materials]. Moscow, Mashinostroyeniye, 2001. 880 p.
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.