Study of the accuracy and applicability of the difference scheme for solving the diffusion-convection problem at large grid Péclet numbers

Authors

  • Aleksandr Ivanovich Sukhinov Don State Technical University
  • Inna Yur’yevna Kuznetsova Southern Federal University
  • Aleksandr Evgen’yevich Chistyakov Don State Technical University
  • Elena Anatol’yevna Protsenko Taganrog Institute named after A.P. Chekhov (branch) Rostov State University of Economics
  • Yuliya Valeriyevna Belova Don State Technical University

DOI:

https://doi.org/10.7242/1999-6691/2020.13.4.34

Keywords:

mathematical model, suspension transport, diffusion-convection problem, numerical simulation, Upwind Leapfrog difference scheme, grid Péclet number, parallel computing

Abstract

The work is devoted to the study of a difference scheme for solving the diffusion-convection problem at large grid Péclet numbers. The suspension transport problem numerical solving is carried out using the improved Upwind Leapfrog difference scheme. Its difference operator is a linear combination of the operators of Upwind and Standard Leapfrog difference schemes, while the modified scheme is obtained from schemes with optimal weighting coefficients. At certain values of the weighting coefficients, this combination leads to mutual compensation of approximation errors, and the resulting scheme gets better properties than the original schemes. In addition, it includes a cell filling function that allows simulating problems in areas with complex geometry. Computational experiments were carried out to solve the suspension transport problem, which arises, for example, during the propagation of suspended matter plumes in an aquatic environment and changes in the bottom topography due to the deposition of suspended soil particles into the sediment during soil unloading into a reservoir (dumping). The results of modeling the suspension transport problem at various values of the grid Péclet number are presented. The algorithm implementation was carried out using the software and hardware architecture of parallel computing: on a central processing unit (Central Processing Unit - CPU) and on a graphics accelerator (Graphics Processing Unit - GPU). The solution to the applied problem has shown its efficiency on the CPU with small computational grids and, if it is necessary to decrease the space steps, then the GPU solution is preferable. It was found that, when using the modified Upwind Leapfrog scheme, an increase in the speed of the water flow does not lead to a loss of solution accuracy due to dissipative sources and is accompanied by an insignificant increase in computational labor costs.

Downloads

Download data is not yet available.
Supporting Agencies
Исследование выполнено при финансовой поддержке РФФИ (проект № 20-01-00421_а).

References

Sukhinov A.I., Chistyakov A.E. Cabaret difference scheme with improved dispersion properties. Math. Models Comput. Simul., 2019, vol. 11, pp. 867-876. https://doi.org/10.1134/S207004821906019X">https://doi.org/10.1134/S207004821906019X

Chetverushkin B.N. Resolution limits of continuous media models and their mathematical formulations. Math. Models Comput. Simul., 2013, vol. 5, no. 3, pp. 266-279.

Iserles A. Generalized leapfrog methods // IMA J. Numer. Anal. 1986. Vol. 6. Р. 381-392. https://doi.org/10.1093/imanum/6.4.381">https://doi.org/10.1093/imanum/6.4.381

Goloviznin V.M., Samarskiy A.A. Raznostnaya approksimatsiya konvektivnogo perenosa s prostranstvennym rasshchepleniyem vremennoy proizvodnoy [Difference approximation of convective transport with spatial splitting of time derivative]. Matem. modelirovaniye – Math. Models and Comput. Simul., 1998, vol. 10, no. 1, pp. 86-100.

Danilin A.V., Solov'ev A.V. A modification of the CABARET scheme for resolving the sound points in gas flows. Vych. met. programmirovaniye – Numerical methods and programming, 2019, vol. 20, no. 4, pp. 481-488. https://doi.org/10.26089/NumMet.v20r442">https://doi.org/10.26089/NumMet.v20r442

Zyuzina N.A., Ostapenko V.V. Decay of unstable strong discontinuities in the case of a convex-flux scalar conservation law approximated by the CABARET scheme. Comput. Math. and Math. Phys., 2018, vol. 58, pp. 950-966. https://doi.org/10.1134/S0965542518060155">https://doi.org/10.1134/S0965542518060155

Gushchin V.A., Kondakov V.G. On the Cabaret Scheme for incompressible fluid flow problems with a free surface. Math. Models Comput. Simul., 2019, vol. 11, pp. 499-508. https://doi.org/10.1134/S2070048219040082">https://doi.org/10.1134/S2070048219040082

Glotov V.Yu., Goloviznin V.M. CABARET scheme in velocity-pressure formulation for two-dimensional incompressible fluids. Comput. Math. and Math. Phys., 2013, vol. 53, pp. 721-735. https://doi.org/10.1134/S0965542513060080">https://doi.org/10.1134/S0965542513060080

Sukhinov A.I., Chistyakov A.E., Protsenko E.A. Upwind and standard leapfrog difference schemes. Vych. met. programmirovaniye – Numerical methods and programming, 2019, vol. 20, no. 2, pp. 170-181. https://doi.org/10.26089/NumMet.v20r216">https://doi.org/10.26089/NumMet.v20r216

Sukhinov A.I., Chistyakov A.E., Protsenko E.A. Difference scheme for solving problems of hydrodynamics for large grid Peclet numbers. Komp’yuternyye issledovaniya i modelirovaniye – Computer Research and Modeling, 2019, vol. 11, no. 5, pp. 833-848. https://doi.org/10.20537/2076-7633-2019-11-5-833-848">https://doi.org/10.20537/2076-7633-2019-11-5-833-848

Kovtun I.I., Protsenko E.A., Sukhinov A.I., Chistyakov A.E. Calculating the impact on aquatic resources dredging in the White Sea. Fundamentalnaya i prikladnaya gidrofizika – Fundamental and Applied Hydrophysics, 2016, vol. 9, no. 2, pp. 27-38.

Gushchin V.A. Family of quasi-monotonic finite-difference schemes of the second-order of approximation. Math. Models Comput. Simul., 2016, vol. 8, pp. 487-496. https://doi.org/10.1134/S2070048216050094">https://doi.org/10.1134/S2070048216050094

Samarskii A.A. Classes of stable schemes. U.S.S.R. Comput. Math. Math. Phys., 1967, vol. 7, no. 5, pp. 171-223. https://doi.org/10.1016/0041-5553(67)90100-0">https://doi.org/10.1016/0041-5553(67)90100-0

Chetverushkin B.N., Yakobovskiy M.V. Vychislitel’nyye algoritmy i arkhitektura sistem vysokoy proizvoditel’nosti [Numerical algorithms and architecture of HPC systems]. Preprint, Keldysh Institute of Applied Mathematics. Moscow, 2018. 12 p. https://doi.org/10.20948/prepr-2018-52">https://doi.org/10.20948/prepr-2018-52

Sukhinov A.I., Chistyakov A.E., Sidoryakina V.V., Protsenko E.A. Economic explicit-implicit schemes for solving multidimensional diffusion-convection problems. Vychisl. mekh. splosh. sred – Computational Continuum Mechanics, 2019, vol. 12, no. 4, pp. 435-445. https://doi.org/10.7242/1999-6691/2019.12.4.37">https://doi.org/10.7242/1999-6691/2019.12.4.37

Published

2020-12-30

Issue

Section

Articles

How to Cite

Sukhinov, A. I., Kuznetsova, I. Y., Chistyakov, A. E., Protsenko, E. A., & Belova, Y. V. (2020). Study of the accuracy and applicability of the difference scheme for solving the diffusion-convection problem at large grid Péclet numbers. Computational Continuum Mechanics, 13(4), 437-448. https://doi.org/10.7242/1999-6691/2020.13.4.34