Numerical study of heat transfer coefficient of titanium reactor wall at air cooling

Authors

  • Timofey Olegovich Karasev Perm National Research Polytechnic University; Institute of Continuous Media Mechanics UB RAS
  • Andrey Sergeyevich Teimurazov Institute of Continuous Media Mechanics UB RAS
  • Anatoliy Viktorovich Perminov Perm National Research Polytechnic University

DOI:

https://doi.org/10.7242/1999-6691/2020.13.4.33

Keywords:

forced convection, turbulence, heat transfer coefficient, RANS, numerical simulation, OpenFOAM

Abstract

This paper is concerned with a numerical study of the thermal regime of the retort surface in an apparatus for the production of titanium. The problem of conjugate heat transfer between the outer wall of a cylindrical retort and the wall of a furnace with heaters, with an air gap between them, is considered. The aim of the work is to obtain estimates for the temperature regime of the retort wall and its surface heat transfer coefficient at different heating and cooling regimes. Data on the distribution of heat flows on retort walls are needed to calculate the turbulent convective flows of liquid magnesium inside the retort, since the non-uniformity of temperature can have a significant impact on the processes occurring inside the retort. The computational domain consists of solid walls with moving air between them. The mathematical model is based on a system of axially symmetric non-stationary Navier-Stokes equations, and the RANS (Reynolds-averaged Navier-Stokes equations) approach is used to describe turbulent fields. Along with the mechanisms of forced convection and thermal conductivity, the model also takes into account the radiation heat transfer between two opposite walls. Four heating modes representing different possible variants of the device operation are considered. Estimates have been obtained for the required blowing rate, which allows keeping retort walls in the working range from 750 to 950 ºС in all modes. It is shown that the temperature along the considered wall section is essentially heterogeneous. Dependencies for the heat transfer coefficient at the side surface of the retort on the vertical coordinate are constructed. Comparison with known formulas for calculation of the heat transfer coefficient obtained for flat infinite surface with uniform heat flux is carried out. It has been established that, in the case under discussion which is more complex, the calculated coefficients are close to those predicted by the known engineering formulas only in part of the regimes examined in this study. In a large range of considered parameters, there are noticeable differences between the obtained dependencies and the simplified estimates; the greatest difference occurs near the channel entrance, where the temperature gradients reach their maximum.

Downloads

Download data is not yet available.

References

Gartmata V.A., Petrun’ko A.N., Galitskiy N.V., Olesov Yu.G. Sandler R.A. Titan [Titanium]. Moscow, Metallurgiya, 1983. 559 p.

Gartmata V.A., Guoyanitskiy B.S., Kramnik V.Yu., Lipkes Ya.M., Seryakov G.V., Suchkov A.B., Khomyakov P.P. Metallurgiya titana [Titanium metallurgy]. Moscow, Metallurgiya, 1968. 643 p.

Sergeyev V.V., Galitskiy N.V., Kiselev V.P., Kozlov V.M. Metallurgiya titana [Titanium metallurgy]. Moscow, Metallurgiya, 1971. 320 p.

Mal’shin V.M., Zavadovskaya V.N., Pampushko N.A. Metallurgiya titana [Titanium metallurgy]. Moscow, Metallurgiya, 1991. 208 p. Mal’shin V.M., Zavadovskaya V.N., Pampushko N.A. Metallurgiya titana

Khalilov R.I., Khripchenko S.Yu., Frik P.G., Stepanov R.A. Electromagnetic measurements of the level of a liquid metal in closed volumes. Meas. Tech., 2007, vol. 50. pp. 861-866. https://doi.org/10.1007/s11018-007-0163-7">https://doi.org/10.1007/s11018-007-0163-7

Krauter N., Eckert S., Gundrum T., Stefani F., Wondrak T., Frick P., Khalilov R., Teimurazov A. Inductive system for reliable magnesium level detection in a titanium reduction reactor. Metall. Mater. Trans. B, 2018, vol. 49, pp. 2089-2096. https://doi.org/10.1007/s11663-018-1291-y">https://doi.org/10.1007/s11663-018-1291-y

Tarunin E.L., Shihov V.M., Yurkov Yu.S. Svobodnaya konvektsiya v tsilindricheskom sosude pri zadannom teplovom potoke na verkhney granitse [Free convection in a cylindrical vessel at a given heat flux at the upper boundary]. Gidrodinamika – Hydrodynamics, 1975, no. 6, pp. 85-98.

Tsaplin A.I., Nechaev V.N. Numerical modeling of non-equilibrium heat and mass transfer processes in a reactor for the production of porous titanium. Vychisl. mekh. splosh. sred – Computational Continuum Mechanics, 2013, vol. 6, no. 4, pp. 483-490. https://doi.org/10.7242/1999-6691/2013.6.4.53">https://doi.org/10.7242/1999-6691/2013.6.4.53

Teimurazov A.S., Frik P.G. Numerical study of molten magnesium convection in the apparatus for titanium reduction. Vychisl. mekh. splosh. sred – Computational Continuum Mechanics, 2015, vol. 8, no. 4, pp. 433-444. https://doi.org/10.7242/1999-6691/2015.8.4.37">https://doi.org/10.7242/1999-6691/2015.8.4.37

Teimurazov A., Frick P., Stefani F. Thermal convection of liquid metal in the titanium reduction reactor. IOP Conf. Ser.: Mater. Sci. Eng., 2017, vol. 208, 012041. https://doi.org/10.1088/1757-899X/208/1/012041">https://doi.org/10.1088/1757-899X/208/1/012041

Karasev Т.О., Teimurazov A.S. Modeling of liquid magnesium turbulent convection in the titanium reduction apparatus using RANS and LES approaches. Vychisl. mekh. splosh. sred – Computational Continuum Mechanics, 2019, vol. 12, no. 4, pp. 353-365. https://doi.org/https:/doi.org/10.7242/1999-6691/2019.12.4.30">https://doi.org/https://doi.org/10.7242/1999-6691/2019.12.4.30

Teimurazov A., Frick P., Weber N., Stefani F. Numerical simulations of convection in the titanium reduction reactor. J. Phys.: Conf. Ser., 2017, vol. 891, 012076. https://doi.org/10.1088/1742-6596/891/1/012076">https://doi.org/10.1088/1742-6596/891/1/012076

Khalilov R., Kolesnichenko I., Teimurazov A., Mamykin A., Frick P. Natural convection in a liquid metal locally heated from above. IOP Conf. Ser.: Mater. Sci. Eng., 2017, vol. 208, 012044. https://doi.org/10.1088/1757-899X/208/1/012044">https://doi.org/10.1088/1757-899X/208/1/012044

Shirokov M.F. Fizicheskiye osnovy gazodinamiki [Physical foundations of gas dynamics]. Moscow, Fizmatgiz, 1958. 341 p.

Kutateladze S.S. Teploperedacha i gidrodinamicheskoye soprotivleniye [Heat transfer and hydrodynamic resistance] Moscow, Energoatomizdat, 1990. 368 p.

Fedorov V.K. An engineering method of calculating convective heat transfer for a body in an attached gas flow. J. Eng. Phys., vol. 8, pp. 130-134. https://doi.org/10.1007/BF00829051">https://doi.org/10.1007/BF00829051

Bergman T.L., Lavine, A.S., Incropera F.P., DeWitt, D.P. Introduction to Heat Transfer, 6th Edition. John Wiley & Sons. 2011. 962 p.

Modest M.F. The improved differential approximation for radiative heat transfer in multi-dimensional media. J. Heat Transfer, 1990, vol. 112, pp. 819-821. https://doi.org/10.1115/1.2910468">https://doi.org/10.1115/1.2910468

Howell J.R. A catalog of radiation configuration factors. McGraw-Hill, 1982. 243 p.

Howell J.R., Menguc M.P., Siegel R. Thermal Radiation Heat Transfer. Taylor & Francis, 2015. 1016 p. https://doi.org/10.1201/b18835">https://doi.org/10.1201/b18835

Marshak R.E. Note on the spherical harmonics method as applied to the Milne problem for a sphere. Phys. Rev., 1947, vol. 71, pp. 443-446. https://doi.org/10.1103/PhysRev.71.443">https://doi.org/10.1103/PhysRev.71.443

Menter F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J., 1994, vol 32,
pp. 1598-1610. https://doi.org/10.2514/3.12149">https://doi.org/10.2514/3.12149

Pope S.B. Turbulent flows. Cambridge University Press, 2000. 771 p. https://doi.org/10.1017/CBO9780511840531">https://doi.org/10.1017/CBO9780511840531

Bogdanov S.N., Burtsev S.I., Ivanov O.P., Kupriyanova O.P. Kholodil’naya tekhnika. Konditsionirovaniye vozdukha. Svoystva veshchestv. Spravochnik [Refrigeration equipment. Air conditioning. Properties of substances. Handbook]. St. Petersburg, SPbGAKhPT, 1990. 320 p.

Grigor’yev I.S., Meylikhov E.Z. (eds.) Fizicheskie velichiny. Spravochnik [Physical quantities. Handbook]. Moscow, Energoatomizdat, 1991. 1232 p.

Issa R.I. Solution of the implicitly discretized fluid flow equations by operator-splitting. J. Comput. Phys., 1985, vol. 62, pp. 40-65. https://doi.org/10.1016/0021-9991(86)90099-9">https://doi.org/10.1016/0021-9991(86)90099-9

Published

2020-12-30

Issue

Section

Articles

How to Cite

Karasev, T. O., Teimurazov, A. S., & Perminov, A. V. (2020). Numerical study of heat transfer coefficient of titanium reactor wall at air cooling. Computational Continuum Mechanics, 13(4), 424-436. https://doi.org/10.7242/1999-6691/2020.13.4.33