Computational modeling of the curing of a frame of an inflatable satellite antenna in near-earth orbit

Authors

  • Anastasiya Yur’yevna Eliseeva JSC “STAR”
  • Lyudmila Andreyevna Komar Institute of Continuous Media Mechanics UB RAS
  • Aleksey Viktorovich Kondyurin Evingаr Scientific

DOI:

https://doi.org/10.7242/1999-6691/2020.13.4.32

Keywords:

inflatable antenna, satellite, near-earth orbit, prepreg, hot curing, solar radiation, temperature, numerical simulation

Abstract

Temperature analysis of a new technological process, curing of prepregs in near-earth orbit, is performed via computational modeling. The problem arose in connection with the currently discussed possibility of using inflatable antennas for small space satellites. Inflatable antennas have a number of advantages over classic extendable metal antennas. However, in order to ensure the continuous operation of inflatable antennas, it is necessary that they acquire rigidity over time and cease to depend on the pressure of air in them. This can be achieved using a frame made of an orbital-curable prepreg. This idea requires experimental justification and analysis by means of computational modeling. In this work, only one of the aspects (temperature effect) of the in-orbit curing technological process is considered. The creation of special equipment for heating prepregs in the satellite body is undesirable because it will increase weight and sizes of a satellite. However, the natural heating of structural elements in space can be due to the radiation emitted from the Sun and the Earth. Numerical experiments demonstrate that the required curing temperature can be achieved in the case when, instead of a simple prepreg frame, use is made of the frame on which a thin layer of copper is deposited. Temperature distributions in the structure during its rotation are examined. Analysis of the results yields time intervals at which the antenna orientation with respect to the solar flux direction should be changed in order to obtain the required temperatures, striving to achieve curing of all elements of the frame in a small number of revolutions around the Earth, that is, as long as a high gas pressure remains in the inflatable antenna.

Downloads

Download data is not yet available.

References

Kondyurin A. Curing of composite materials for an inflatable construction on the Moon. Moon. Prospective energy and material resources, ed. V. Badescu. Springer, 2012. Pp. 503-518. https://doi.org/10.1007/978-3-642-27969-0_21">https://doi.org/10.1007/978-3-642-27969-0_21

Chandra A. Inflatable parabolic reflectors for small satellite communication. MSc Thesis. Arizona State University, USA, 2015. 66 p.

Beliaev A.Yu., Svistkov A.L. Hardening cylindrical elements of nanosatellites inflatable antenna modeling. Vestnik Permskogo universiteta. Fizika – Bulletin of Perm University. Physics, 2017, no. 4(38), pp. 5-10. https://doi.org/10.17072/1994-3598-2017-4-5-10">https://doi.org/10.17072/1994-3598-2017-4-5-10

Kondyurin A., Lauke B., Vogel R. Photopolymerisation of composite material in simulated free space environment at low Earth orbital flight. Eur. Polymer J., 2006, vol. 42, pp. 2703-2714. https://doi.org/10.1016/j.eurpolymj.2006.04.018">https://doi.org/10.1016/j.eurpolymj.2006.04.018

Babuscia A., Corbin B., Knapp M., Jensen-Clem R., Loo M.V., Seager S. Inflatable antenna for cubesats: Motivation for development and antenna design. Acta Astronautica, 2013, vol. 91, pp. 322-332. https://doi.org/10.1016/j.actaastro.2013.06.005">https://doi.org/10.1016/j.actaastro.2013.06.005

Chahat N., Hodges R.E., Sauder J., Thomson M., Peral E., Rahmat-Samii Y. CubeSat deployable Ka-Band mesh reflector antenna development for earth science missions. IEEE Trans. Antenn. Propag., 2016, vol. 64, pp. 2083-2093. https://doi.org/10.1109/TAP.2016.2546306">https://doi.org/10.1109/TAP.2016.2546306

Demin A.A., Kondyurin A.V., Terpugov V.N. Computer and stratospheric flight simulation of space experiment on curing of epoxy composite. Materials physics and mechanics, 2016, vol. 26, no. 1, pp. 73-76. https://mpm.spbstu.ru/article/2016.46.18/">https://mpm.spbstu.ru/article/2016.46.18/

Brauner C., Soprano P., Herrmann A.S., Meiners D. Cure-dependent thermo-chemical modelling and analysis of the manufacturing process of an aircraft composite frame. J. Compos. Mater., 2014, vol. 49, pp. 921-938. https://doi.org/10.1177/0021998314527777">https://doi.org/10.1177/0021998314527777

Vorob’yev A. Epoksidnyye smoly [Epoxy resins]. Komponenty i tekhnologii, 2003, no. 8(34), pp. 170-173.

Eselev A.D. Epoksidnyye klei [Epoxy adhesives]. Kompozitnyy mir – Composite world, 2006, no. 4, pp. 18-19. http://www.epoksid.ru/Composite_07_18-19.pdf">http://www.epoksid.ru/Composite_07_18-19.pdf

Mostovoy A.S. Razrabotka sostavov, tekhnologii i opredeleniye svoystv mikro- i nanonapolnennykh epoksidnykh kompozitov funktsional’nogo naznacheniya [Development of compositions, technology and determination of the properties of micro- and nanofilled epoxy composites for functional purposes]. PhD Dissertation, Yuri Gagarin State Technical University of Saratov, Saratov, 2014. 149 p. 2014. 149 с. http://www.sstu.ru/files/dissertation/Dis-M.pdf">http://www.sstu.ru/files/dissertation/Dis-M.pdf

Vodovozov G.A., Marahovski K.M., Kostromina N.V., Osipchik V.S., Aristov V.M., Kravchenko T.P. Development of epoxy-rubber binder to create reinforced composite materials. Plasticheskie massy, 2017, no. 5-6, pp. 9-13.

Osorgina I.V., Svistkov A.L., Pelevin A.G., Chudinov V.S., Terpugov V.N. Particularity of curing the epoxy resin in vacuum. Vestnik Permskogo universiteta. Khimiya – Bulletin of Perm University. Chemistry, vol. 7, no. 4, pp. 483-491.

Eliseeva A.Yu., Svistkov A.L., Kondyurin A.V. Mathematical model of the reaction for hot curing of a prepreg of a nanosatellite antenna. Vestnik Permskogo universiteta. Fizika – Bulletin of Perm University. Physics, 2017, no. 4(38), pp. 19-25. https://doi.org/10.17072/1994-3598-2017-4-19-25">https://doi.org/10.17072/1994-3598-2017-4-19-25

Gilev V.G., Komar L.A, Osorgina I.V., Pelevin A.G. Experimental study of curing processes epoxy binder ED-20. Vestnik Permskogo universiteta. Fizika – Bulletin of Perm University. Physics, 2019, no. 4, pp. 17-23 https://doi.org/10.17072/1994-3598-2019-4-17-23">https://doi.org/10.17072/1994-3598-2019-4-17-23

Evlampieva S.E., Beliaev A.Y., Maltcev M.S., Svistkov A.L. Analysis Of The Temperature Regime Of The Hardening Inflatable Elements Of Nanosatellite Antennas. MKMK – Mechanics of composite materials and structures, 2017, vol. 23, no. 4, pp. 459-469. https://doi.org/10.25590/mkmk.ras.2017.23.04.459_469.01">https://doi.org/10.25590/mkmk.ras.2017.23.04.459_469.01

Skripov P.V., Puchinskis S.E., Begishev V.P., Lipchak A.I., Pavlov P.A. Heat pulse monitoring of curing and polymer-gas systems. J. Appl. Polymer Sci., 1994, vol. 51, pp. 1607-1619. https://doi.org/10.1002/app.1994.070510911">https://doi.org/10.1002/app.1994.070510911

Kondyurin A., Kostarev K., Bagara M. Polymerization processes of epoxy plastic in simulated free space conditions. Acta Astronautica, 2001, vol. 48, pp. 109-113. https://doi.org/10.1016/S0094-5765(00)00147-8">https://doi.org/10.1016/S0094-5765(00)00147-8

Sarles S.A., Leo D.J. Consolidation of U-Nyte epoxy-coated carbon-fiber composites via temperature-controlled resistive heating. J. Compos. Mater., 2008, vol. 42, pp. 2551-2566. https://doi.org/10.1177/0021998308097197">https://doi.org/10.1177/0021998308097197

Kondyurin A., Komar L.A., Svistkov A.L. Combinatory model of curing process in epoxy composite. Compos. B Eng., 2012, vol. 43, pp. 616-620. https://doi.org/10.1016/j.compositesb.2011.11.019">https://doi.org/10.1016/j.compositesb.2011.11.019

Giorgini L., Mazzocchetti L., Benelli T., Minak G., Poodts E., Dolcini E. Kinetics and modeling of curing behavior for two different prepregs based on the same epoxy precursor: A case study for the industrial design of thick composites. Polymer Compos., 2013, vol. 34, pp. 1506-1514. https://doi.org/10.1002/pc.22540">https://doi.org/10.1002/pc.22540

Vafayan M., Beheshty M.H., Ghoreishy M.H.R., Abedinic H. Advanced integral isoconversional analysis for evaluating and predicting the kinetic parameters of the curing reaction of epoxy prepreg. Thermochimica Acta, 2013, vol. 557,
pp. 37-43. https://doi.org/10.1016/j.tca.2013.01.035">https://doi.org/10.1016/j.tca.2013.01.035

Vafayan M., Abedini H., Ghoreishy M.H.R., Beheshty M.H. Effect of cure kinetic simulation model on optimized thermal cure cycle for thin-sectioned composite parts. Polymer Compos., 2013, vol. 34, pp. 1172-1179. https://doi.org/10.1002/pc.22526">https://doi.org/10.1002/pc.22526

Boey F.Y.C., Qiang W. Experimental modeling of the cure kinetics of an epoxy-hexaanhydro-4-methylphthalicanhydride (MHHPA) system. Polymer, 2000, vol. 41, pp. 2081-2094. https://doi.org/10.1016/s0032-3861(99)00409-7">https://doi.org/10.1016/s0032-3861(99)00409-7

Dmitriev O.S., Zhyvenkova A.A., Dmitriev A.O. Thermo-chemical analysis of the cure process of thick polymer composite structures for industrial applications. Advanced materials & technologies, 2016, no. 2, pp. 53-60. https://doi.org/10.17277/amt.2016.02.pp.053-060">https://doi.org/10.17277/amt.2016.02.pp.053-060

Sorrentino L., Esposito L., Bellini C. A new methodology to evaluate the influence of curing overheating on the mechanical properties of thick FRP laminates. Compos. B Eng., 2017, vol. 109, pp. 187-196. https://doi.org/10.1016/j.compositesb.2016.10.064">https://doi.org/10.1016/j.compositesb.2016.10.064

Shevtsov S., Zhilyaev I.V., Tarasov I., Wu J.K., Snezhina N.G. Model-based multi-objective optimization of cure process control for a large CFRP panel. Engineering computations, 2018, vol. 35, pp. 1085-1097. https://doi.org/10.1108/ec-09-2017-0354">https://doi.org/10.1108/ec-09-2017-0354

Garishin O.K., Svistkov A.L., Belyaev A.Yu., Gilev V.G. On the possibility of using epoxy prepregs for carcass-inflatable nanosatellite antennas. Mater. Sci. Forum, 2018, vol. 938, pp. 156-163. https://doi.org/10.4028/www.scientific.net/msf.938.156">https://doi.org/10.4028/www.scientific.net/msf.938.156

Svistkov A.L., Komar L.A., Kondyurin A.V., Mal’tsev M.S., Terpugov V.N. XI International conference on nonequilibrium processes in nozzles and jets (NPNJ'2016). Alushta, 25-31 May 2016. Moscow Aviation Institute, 2016, pp. 385-387.

Svistkov A.L., Eliseeva A.Yu., Kondyurin A.V. Mathematical model for ED-20 rigidization with a rigidizer TEAT-1. Vestnik Permskogo universiteta. Fizika – Bulletin of Perm University. Physics, 2019, no. 1, pp. 9-16. https://doi.org/10.17072/1994-3598-2019-1-09-16">https://doi.org/10.17072/1994-3598-2019-1-09-16

Yoo H.M., Jeon J.H., Li M.X., Lee W.I., Choi S.W. Analysis of curing behavior of endo-dicyclopentadiene using different amounts of decelerator solution. Compos. B Eng., 2019, vol. 161, pp. 439-454. https://doi.org/10.1016/j.compositesb.2018.12.068">https://doi.org/10.1016/j.compositesb.2018.12.068

Pestrenin V.M., Pestrenina I.V., Rusakov S.V., Kondyurin A.V. Curing of large prepreg shell in solar synchronous Low Earth Orbit: Precession flight regimes. Acta Astronautica, 2018, vol. 151, pp. 342-347. https://doi.org/10.1016/j.actaastro.2018.06.029">https://doi.org/10.1016/j.actaastro.2018.06.029

Krynin A.G., Khokhlov J.A. Optical performances thermostabilised polyethyleneterephtalate film used for the functional materials of a glass cover. Aviatsionnyye materialy i tekhnologii – Aviation Materials and Technologies, 2013, no. 4, pp. 31-34. https://journal.viam.ru/en/system/files/uploads/pdf/2013/2013_4_6_1.pdf">https://journal.viam.ru/en/system/files/uploads/pdf/2013/2013_4_6_1.pdf

GOST 24234-80. Polyethylene terephtalate film (polyester film). Specifications. http://docs.cntd.ru/document/1200020698">http://docs.cntd.ru/document/1200020698 (accessed 23 November 2020).

Belyayev V.S. Naruzhnyye ograzhdayushchiye konstruktsii s rekuperatsiyey transmissionnogo tepla [External envelopes with transmission heat recovery]. Zhilishchnoye stroitel’stvo – Housing Construction, 2013, no. 8, pp.10-21. http://rifsm.ru/u/fl/itm5949.pdf">http://rifsm.ru/u/fl/itm5949.pdf

http://elektrosteklo.ru/Al_rus.htm">http://elektrosteklo.ru/Al_rus.htm (accessed 23 November 2020).

Serova V.N., Noskova E.N. Opticheskiye kharakteristiki i svetostoykost’ polimernykh upakovochnykh plenok i nanesennykh na nikh krasochnykh sloyev [Optical characteristics and lightfastness of polymer packaging films and paint layers applied to them]. Vestnik tekhnologicheskogo universiteta – Bulletin of the Technological University, 2016, vol. 19, no. 15, pp. 61-63.

Published

2020-12-30

Issue

Section

Articles

How to Cite

Eliseeva, A. Y., Komar, L. A., & Kondyurin, A. V. (2020). Computational modeling of the curing of a frame of an inflatable satellite antenna in near-earth orbit. Computational Continuum Mechanics, 13(4), 414-423. https://doi.org/10.7242/1999-6691/2020.13.4.32