Natural vibrations of truncated conical shells of variable thickness

Authors

  • Sergey Arkad’yevich Bochkarev Institute of Continuous Media Mechanics UB RAS

DOI:

https://doi.org/10.7242/1999-6691/2020.13.4.31

Keywords:

classical shell theory, conical shell, Godunov’s orthogonal sweep method, natural vibrations, variable thickness

Abstract

The paper presents the results of studying the natural frequencies of circular truncated conical shells, the thickness of which varies along the length according to different laws. The behavior of elastic structure is described in the framework of the classical theory of shells based on the Kirchhoff-Love hypotheses. The corresponding geometric and physical relations together with the equations of motion are reduced to a system of ordinary differential equations for new unknowns. The solution to the formulated boundary value problem is found using Godunov's orthogonal sweep method involving the numerical integration of differential equations by the fourth order Runge-Kutta method. The natural frequencies of vibrations are evaluated using a combination of a step-wise procedure and subsequent refinement by the interval bisection method. The reliability of the obtained results is verified by making a comparison with the known numerical-analytical solutions. The dependences of the minimum vibration frequencies obtained at shell thicknesses subject to a power-law variation (linear and quadratic, having symmetric and asymmetric shapes) and harmonic variation (with positive and negative curvature) are investigated for shells with different combinations of boundary conditions (free support, rigid and cantilever fastening), cone angles and linear dimensions. The results of the study confirm the existence of configurations, which provide a significant increase in the frequency spectrum in comparison with shells of constant thickness under the same limitations on the weight of the structure.

Downloads

Download data is not yet available.
Supporting Agencies
Работа выполнена в рамках государственного задания (тема АААА-А19-119012290100-8).

References

Banichuk N.V. Optimizatsiya form uprugikh tel [Optimization of forms of elastic bodies]. Moscow, Nauka, 1980. 256 p.

Hu H.-T., Ou S.-C. Maximization of the fundamental frequencies of laminated truncated conical shells with respect to fiber orientations. Compos. Struct., 2001,vol. 52, pp. 265-275. https://doi.org/10.1016/S0263-8223(01)00019-8">https://doi.org/10.1016/S0263-8223(01)00019-8

Blom A.W., Setoodeh S., Hol J.M.A.M., Gürdal Z. Design of variable-stiffness conical shells for maximum fundamental eigenfrequency. Comput. Struct., 2008,vol. 86, pp. 870-878. https://doi.org/10.1016/j.compstruc.2007.04.020">https://doi.org/10.1016/j.compstruc.2007.04.020

Topal U. Multiobjective optimization of laminated composite cylindrical shells for maximum frequency and buckling load. Mater. Design., 2009, vol. 30, pp. 2584-2594. https://doi.org/10.1016/j.matdes.2008.09.020">https://doi.org/10.1016/j.matdes.2008.09.020

Hu H.-T., Chen P.-J. Maximization of fundamental frequencies of axially compressed laminated truncated conical shells against fiber orientation. Thin-Walled Struct., 2015, vol. 97, pp. 154-170. https://doi.org/10.1016/j.tws.2015.09.004">https://doi.org/10.1016/j.tws.2015.09.004

Shi J.-X., Nagano T., Shimoda M. Fundamental frequency maximization of orthotropic shells using a free-form optimization method. Compos. Struct., 2017, vol. 170, pp. 135-145. https://doi.org/10.1016/j.compstruct.2017.03.007">https://doi.org/10.1016/j.compstruct.2017.03.007

Medvedev N.G. Maximization of the fundamental natural frequency and polymodality of vibrational modes of orthotropic shells of variable thickness. Mech. Solids, 1985, vol. 20, no. 3, pp. 140-148.

Sharypov F.A. Svobodnyye kolebaniya konicheskikh obolochek lineyno-peremennoy tolshchiny [Free vibrations of conical shells of linear-variable thickness]. Issledovaniya po teorii plastin i obolochek [Research on the theory of plates and shells]. Kazan, Kazan Univ., 1970. Iss. 6-7. Pp. 648-655.

Soni S.R., Jain R.K., Prasad C. Torsional vibrations of shells of revolution of variable thickness. J. Acoust. Soc. Am., 1973, vol. 53, pp. 1445-1447. https://doi.org/10.1121/1.1913494">https://doi.org/10.1121/1.1913494

Chandrasekaran K. Torsional vibrations of some layered shells of revolution. J. Sound Vib., 1977, vol. 55, pp. 27-37. https://doi.org/10.1016/0022-460X(77)90579-X">https://doi.org/10.1016/0022-460X(77)90579-X

Takahashi S., Suzuki K., Anzai E., Kosawada T. Axisymmetric vibrations of conical shells with variable thickness. Bull. JSME, 1982, vol. 25, no. 209, pp. 1771-1780. https://doi.org/10.1299/jsme1958.25.1771">https://doi.org/10.1299/jsme1958.25.1771

Irie T., Yamada G., Kaneko Y. Free vibration of a conical shell with variable thickness. J. Sound Vib., 1982, vol. 82, pp. 83-94. https://doi.org/10.1016/0022-460X(82)90544-2">https://doi.org/10.1016/0022-460X(82)90544-2

Takahashi S., Suzuki K., Kosawada T. Vibrations of conical shells with variable thickness (continued). Bull. JSME, 1985, vol. 28, no. 235, pp. 117-123. https://doi.org/10.1299/jsme1958.28.117">https://doi.org/10.1299/jsme1958.28.117

Takahashi S., Suzuki K., Kosawada T. Vibrations of conical shells with variable thickness (3rd report, analysis by the higher-order improved theory). Bull. JSME, 1986, vol. 29, no. 258, pp. 4306-4311. https://doi.org/10.1299/jsme1958.29.4306">https://doi.org/10.1299/jsme1958.29.4306

Sankaranarayanan N., Chandrasekaran K., Ramaiyan G. Axisymmetric vibrations of laminated conical shells of variable thickness. J. Sound Vib., 1987, vol. 118, pp. 151-161. https://doi.org/10.1016/0022-460X(87)90260-4">https://doi.org/10.1016/0022-460X(87)90260-4

Sankaranarayanan N., Chandrasekaran K., Ramaiyan G. Free vibrations of laminated conical shells of variable thickness. J. Sound Vib., 1988, vol. 123, pp. 357-371. https://doi.org/10.1016/S0022-460X(88)80117-2">https://doi.org/10.1016/S0022-460X(88)80117-2

Sivadas K.R., Ganesan N. Free vibration of cantilever conical shells with variable thickness. Comput. Struct., 1990, vol. 36, pp. 559-566. https://doi.org/10.1016/0045-7949(90)90290-I">https://doi.org/10.1016/0045-7949(90)90290-I

Sivadas K.R., Ganesan N. Vibration analysis of laminated conical shells with variable thickness. J. Sound Vib., 1991, vol. 148, pp. 477-491. https://doi.org/10.1016/0022-460X(91)90479-4">https://doi.org/10.1016/0022-460X(91)90479-4

Sivadas K.R., Ganesan N. Vibration analysis of thick composite clamped conical shells of varying thickness. J. Sound Vib., 1992, vol. 152, pp. 27-37. https://doi.org/10.1016/0022-460X(92)90063-4">https://doi.org/10.1016/0022-460X(92)90063-4

Viswanathan K.K., Navaneethakrishnan P.V. Free vibration of layered truncated conical shell frusta of differently varying thickness by the method of collocation with cubic and quintic splines. Int. J. Solids Struct., 2005, vol. 42, pp. 1129-1150. https://doi.org/10.1016/j.ijsolstr.2004.06.065">https://doi.org/10.1016/j.ijsolstr.2004.06.065

Grigorenko A.Ya., Maltsev S.A. O svobodnykh kolebaniyakh ortotropnykh konicheskikh obolochek peremennoy v dvukh napravleniyakh tolshchiny [About free vibrations of orthotropic conical shells with thickness variable in two directions]. Dokl. NAN Ukrainy – Rep. NAS Ukraine, 2009, no. 11, pp. 60-66.

Ning W., Zhang D.S., Jia J.L. Free vibration analysis of stiffened conical shell with variable thickness distribution. Appl. Mech. Mater., 2014, vol. 614, pp. 7-11. https://doi.org/10.4028/www.scientific.net/amm.614.7">https://doi.org/10.4028/www.scientific.net/amm.614.7

Dai Q., Cao Q., Chen Y. Free vibration analysis of truncated circular conical shells with variable thickness using the Haar wavelet method. J. Vibroeng., 2016, vol. 18, pp. 5291-5305. https://doi.org/10.21595/jve.2016.16976">https://doi.org/10.21595/jve.2016.16976

Javed S., Viswanathan K.K., Aziz Z.A., Lee J.H. Vibration analysis of a shear deformed anti-symmetric angle-ply conical shells with varying sinusoidal thickness. Struct. Eng. Mech., 2016, vol. 58, pp. 1001-1020. https://doi.org/10.12989/sem.2016.58.6.1001">https://doi.org/10.12989/sem.2016.58.6.1001

Viswanathan K.K., Nor Hafizah A.K., Aziz Z.A. Free vibration of angle-ply laminated conical shell frusta with linear and exponential thickness variations. Int. J. Acoust. Vib., 2018, vol. 23, pp. 264-276. https://doi.org/10.20855/ijav.2018.23.21164">https://doi.org/10.20855/ijav.2018.23.21164

Javed S., Al Mukaha F.H.H., Salama M.A. Free vibration analysis of composite conical shells with variable thickness. Shock Vib., 2020, vol. 2020, 4028607. https://doi.org/10.1155/2020/4028607">https://doi.org/10.1155/2020/4028607

Sivadas K.R., Ganesan N. Free vibration of circular cylindrical shells with axially varying thickness. J. Sound Vib., 1991, vol. 147, pp. 73-85. https://doi.org/10.1016/0022-460X(91)90684-C">https://doi.org/10.1016/0022-460X(91)90684-C

El-Kaabazi N., Kennedy D. Calculation of natural frequencies and vibration modes of variable thickness cylindrical shells using the Wittrick–Williams algorithm. Comput. Struct., 2012, vol. 104-105, pp. 4-12. https://doi.org/10.1016/j.compstruc.2012.03.011">https://doi.org/10.1016/j.compstruc.2012.03.011

Karmishin A.V., Lyaskovets V.A., Myachenkov V.I., Frolov A.N. Statika i dinamika tonkostennykh obolochechnykh konstruktsiy [The statics and dynamics of thin-walled shell structures]. Moscow, Mashinostroyeniye, 1975. 376 p.

Godunov S.K. O chislennom reshenii krayevykh zadach dlya sistem lineynykh obyknovennykh differentsial’nykh uravneniy [On the numerical solution of boundary-value problems for systems of linear ordinary differential equations]. UMN – Uspekhi Mat. Nauk, 1961, vol. 16, no. 3, pp. 171-174.

Irie T., Yamada G., Tanaka K. Natural frequencies of truncated conical shells. J. Sound Vib., 1984, vol. 92, pp. 447-453. https://doi.org/10.1016/0022-460X(84)90391-2">https://doi.org/10.1016/0022-460X(84)90391-2

Shu C. An efficient approach for free vibration analysis of conical shells. Int. J. Mech. Sci., 1996, vol. 38, pp. 935-949. https://doi.org/10.1016/0020-7403(95)00096-8">https://doi.org/10.1016/0020-7403(95)00096-8

Liew K.M., Ng T.Y., Zhao X. Free vibration analysis of conical shells via the element-free kp-Ritz method. J. Sound Vib., 2005, vol. 281, pp. 627-645. https://doi.org/10.1016/j.jsv.2004.01.005">https://doi.org/10.1016/j.jsv.2004.01.005

Khloptseva N.S. Vesovaya effektivnost’ tonkostennykh obolochek postoyannoy i peremennoy tolshchiny [Weight efficiency of thin-walled shells of constant and variable thickness]. Mekhanika. Matematika: sb. nauch. tr. [Mechanics. Mathematics. Collection of scientific works]. Saratov, Saratov Univ., 2007. Iss. 9. Pp. 155-157.

Published

2020-12-30

Issue

Section

Articles

How to Cite

Bochkarev, S. A. (2020). Natural vibrations of truncated conical shells of variable thickness. Computational Continuum Mechanics, 13(4), 402-413. https://doi.org/10.7242/1999-6691/2020.13.4.31