Numerical simulation of T-stresses and stress biaxiality factor for a centrally cracked specimen under mixed boundary conditions

Authors

  • Aleksandr Aleksandrovich Tyrymov Volgograd State Technical University

DOI:

https://doi.org/10.7242/1999-6691/2020.13.4.30

Keywords:

mathematical simulation, elasticity, strain, singular element, T-stress, stress biaxiality factor

Abstract

The results of the numerical calculation of T-stresses and the stress biaxiality factor in a centrally cracked tensile plate obtained by the graph method are presented. The method of analysis of a deformable solid is based on the principles of graph theory used in mechanics for constructing discrete models that allow numerical modeling of the fields of displacements, deformations, and stresses of a solid. When analyzing the stress-strain state near the crack tip, the author uses the singular element of the graph model of an elastic medium. When calculating T-stresses, stress and displacement methods are used. Calculations are performed on a coarse grid, however, it allows one to get fairly accurate results. This is because the graph laws (Kirchhoff’s vertex and cyclic laws) provide conditions for equilibrium and compatibility of deformations for the element as a whole. In addition, a special procedure for determining the coefficients of approximating polynomials leads to the implementation of equilibrium equations for the volume of the element. The state of a sample with a crack is described by two dimensionless complexes, which makes it possible to evaluate the biaxiality of the sample. One of these complexes depends on the crack length, applied load, elastic modulus of the material and crack tip opening displacement. Another complex is related to the calculation of a non-singular term in the Williams decomposition. The computational experiment allowed establishing a relationship between these dimensionless complexes. It is important to note that these parameters can be easily determined from a full-scale experiment. As a result, using several full-scale measurements, an approximate estimate for T-stresses and the stress biaxiality factor was obtained.

Downloads

Download data is not yet available.

References

Williams M.L. On the stress distribution at the base of a stationary crack. J. Appl. Mech., 1957, vol. 24, pp. 109-114. https://resolver.caltech.edu/CaltechAUTHORS:20140729-122058948">https://resolver.caltech.edu/CaltechAUTHORS:20140729-122058948

Leevers P.S., Radon J.C. Inherent stress biaxiality in various fracture specimen geometries. Int. J. Fract., 1982, vol. 19, pp. 311-325. https://doi.org/10.1007/BF00012486">https://doi.org/10.1007/BF00012486

Matviyenko Yu.G. Modeli i kriterii mekhaniki razrusheniya [Models and criteria of fracture mechanics]. Moscow: Fizmatlit, 2006. 328 p.

Larsson S.G., Carlsson A.J. Influence of non-singular stress terms and specimen geometry on small-scale yielding at crack tips in elastic-plastic materials. J. Mech. Phys. Solid., 1973, vol. 21, pp. 263-277. https://doi.org/10.1016/0022-5096(73)90024-0">https://doi.org/10.1016/0022-5096(73)90024-0

Eftis J., Subramonian N., Liebowitz H. Biaxial load effects on the crack border elastic strain energy and strain energy rate. Eng. Fract. Mech., 1977, vol. 9, pp. 753-764. https://doi.org/10.1016/0013-7944(77)90001-7">https://doi.org/10.1016/0013-7944(77)90001-7

Rice J.R. Limitations to the small scale yielding approximation for crack tip plasticity. J. Mech. Phys. Solid., 1974, vol. 22, pp. 17-26. https://doi.org/10.1016/0022-5096(74)90010-6">https://doi.org/10.1016/0022-5096(74)90010-6

Gupta M., Alderliesten R.C., Benedictus R. A review of T-stress and its effects in fracture mechanics. Eng. Fract. Mech., 2015, vol. 134, pp. 218-241. https://doi.org/10.1016/j.engfracmech.2014.10.013">https://doi.org/10.1016/j.engfracmech.2014.10.013

Matvienko Yu.G. Two approaches to taking nonsingular T-stresses into account in the criteria of fracture mechanics for bodies with notches. J. Mach. Manuf. Reliab., 2011, vol. 40, pp. 494-498. https://doi.org/10.3103/S105261881104011X">https://doi.org/10.3103/S105261881104011X

Matvienko Yu.G. Nonsingular T-stress in problems of two-parameter fracture mechanics. Zavodskaya laboratoriya. Diagnostika materialov – Industrial Laboratory. Diagnostics of materials, 2012, vol. 78, no. 2, pp. 51-58.

Matvienko Yu.G., Pochinkov Р.А. Effect of nonsingular T-stress components on the plastic-deformation zones near the tip of a mode I crack. Russ. Metall., 2013, vol. 2013, pp. 262-271. https://doi.org/10.1134/S0036029513040095">https://doi.org/10.1134/S0036029513040095

Litvinov I.A., Matvienko Yu.G., Razumovsky I.A. On the accuracy of determination of nonsingular component in stress field at crack tip using extrapolation method. Mashinostroenie i inzhenernoe obrazovanie, 2014, no. 4, pp. 43-51.

Chernyatin A.S., Razumovsky I.A., Matvienko Yu.G. Evaluation of the size of inelastik strain zone at the top of crack based on analysis of the displacement fields. Zavodskaya laboratoriya. Diagnostika materialov – Industrial laboratory. Diagnostics of materials, 2016, vol. 82, no.12, pp. 45-51.

Ayatollahi M.R., Rashidi Moghaddam M., Berto F. T-stress effects on fatique crack growth – Theory and experiment. Eng. Fract. Mech., 2018, vol. 187, pp. 103-114. https://doi.org/10.1016/j.engfracmech.2017.10.025">https://doi.org/10.1016/j.engfracmech.2017.10.025

Pisarev V.S., Matvienko Y.G., Eleonsky S.I., Odintsev I.N. Combining the crack compliance method and speckle interferometry data for determination of stress intensity factors and T-stresses. Eng. Fract. Mech., 2017, vol. 179,
pp. 348-374. https://doi.org/10.1016/j.engfracmech.2017.04.029">https://doi.org/10.1016/j.engfracmech.2017.04.029

Bouledroua O., Elazzizi A., Hadj Meliani M., Pluvinage G., Matvienko Yu.G. T-stress estimation by the two-parameter approach for a specimen with a V-shaped notch. J. Appl. Mech. Tech. Phy., 2017, vol. 58, pp. 546-555. https://doi.org/10.1134/s0021894417030208">https://doi.org/10.1134/s0021894417030208

Matvienko Yu.G., Nikishkov G.P. Two-parameter J-A concept in connection with crack-tip constraint. Theor. Appl. Fract. Mech., 2017, vol. 92, pp. 306-317. https://doi.org/10.1016/j.tafmec.2017.04.007">https://doi.org/10.1016/j.tafmec.2017.04.007

Acanfora M., Gallo P., Razavi S.M.J., Ayatollahi M.R., Berto FNumerical evaluation of T-stress under mixed mode loading through the use of coarse meshes. Phys. Mesomech., 2018, vol. 21, pp. 124-134. https://doi.org/10.1134/S1029959918020054">https://doi.org/10.1134/S1029959918020054

Chernyatin A.S., Lopez-Crespo P., Moreno B., Matvienko Yu.G. Multi-approach studi of crack-tip mechanics on aluminium 2024 alloy. Theor. Appl. Fract. Mech., 2018, vol. 98, pp. 38-47. https://doi.org/10.1016/j.tafmec.2018.09.007">https://doi.org/10.1016/j.tafmec.2018.09.007

Yang J. A two-parameter criterion for predicting the fracture location along a surface crack. Eng. Fract. Mech., 2018, vol. 188, pp. 70-79. https://doi.org/10.1016/j.engfracmech.2017.07.022">https://doi.org/10.1016/j.engfracmech.2017.07.022

Manafi Farid H., Fakoor M. Mixed mode I/II fracture criterion for arbitrary cracks in orthotropic materials considering T‑stress effects. Theor. Appl. Fract. Mech., 2019, vol. 99, pp. 147-160. https://doi.org/10.1016/j.tafmec.2018.11.015">https://doi.org/10.1016/j.tafmec.2018.11.015

 Kuzovkov E.G. Configuration and parameters of the graph models of an elastic body. Strength Mater., 1986, vol. 18, pp. 528-534. https://doi.org/10.1007/BF01524081">https://doi.org/10.1007/BF01524081

Кuzovkov Е.G. Eguations of state the graph model of an elastic solid. Strength Mater., 1986, vol. 18, pp. 698-704. https://doi.org/10.1007/BF01522789">https://doi.org/10.1007/BF01522789

Kuzovkov E.GAxisymmetric graph model of an elastic solid. Strength Mater., 1996, vol. 28, pp. 470-485. https://doi.org/10.1007/BF02209319">https://doi.org/10.1007/BF02209319

Кuzovkov Е.G. Graph model of elastic medium in the cartesian system of coordinates. Strength Mater., 1993, vol. 25, pp. 906-914https://doi.org/10.1007/BF00774638">https://doi.org/10.1007/BF00774638

Кuzovkov Е.G. Graph model of an elastic body in mixed variables. Strength Mater., 1986, vol. 18, pp. 807-813. https://doi.org/10.1007/BF01523964">https://doi.org/10.1007/BF01523964

Kuzovkov E.G., Tyrymov A.A. Grafovyye modeli v ploskoy i osesimmetrichnoy zadachakh teorii uprugosti [Graph model in plane and axisymmetric problems of the theory of elasticity]. Volgograd, VolgGTU, 2010. 128 p.

Tyrymov A.A. A singular element of graph model of an elastic medium in a cartesian coordinate system. Vychisl. mekh. splosh. sred – Compatational Continuum Mechanics, 2011, vol. 4, no. 4, pp. 125-136. https://doi.org/10.7242/1999-6691/2011.4.4.47">https://doi.org/10.7242/1999-6691/2011.4.4.47

Tyrymov A.A. Chislennoye modelirovaniye i raschët podatlivosti obraztsa s tsentral’noy treshchinoy na osnove grafovoy modeli uprugogo tela [Numerical simulation and calculation of the sensitivity of a sample with a central crack based on the graph model of an elastic body]. Trudy MAI, 2014, no. 77. http://www.mai.ru/upload/iblock/e70/e7020711c2e38b9154c74d87fb727ed5.pdf">http://www.mai.ru/upload/iblock/e70/e7020711c2e38b9154c74d87fb727ed5.pdf

Morozov Е.М., Muyzemnek А.Yu., Shadskiy А.S. ANSYS v rukakh inzhenera: Меkhаniка razrusheniya [ANSYS in the hands of the engineer: Fracture mechanics]. Мoscow, LЕNАND, 2008. 456 p.

O’Dowd N.P., Shih C.F. Two-parameter facture mechanics: Theory and application. Fracture mechanics, ed. J. Landes, D. McCabe, J. Boulet. ASTM STP, 1994. P. 21-47. https://doi.org/10.1520/STP13698s">https://doi.org/10.1520/STP13698s

Isida M. Effect of width and length on stress intensity factors of internally cracked plates under various boundary conditions. Int. J. Fract. Mech., 1971, vol. 7, pp. 301-316. https://doi.org/10.1007/BF00184306">https://doi.org/10.1007/BF00184306

Chen Y.-Z., Chen Y.-H. A mixed boundary problem for a finite internally cracked plate. Eng. Fract. Mech., 1981, vol. 14, pp. 741-751. https://doi.org/10.1016/0013-7944(81)90086-2">https://doi.org/10.1016/0013-7944(81)90086-2

Published

2020-12-30

Issue

Section

Articles

How to Cite

Tyrymov, A. A. (2020). Numerical simulation of T-stresses and stress biaxiality factor for a centrally cracked specimen under mixed boundary conditions. Computational Continuum Mechanics, 13(4), 393-401. https://doi.org/10.7242/1999-6691/2020.13.4.30