Hydrodynamic aspects of river confluence with different water densities

Authors

  • Tat’yana Petrovna Lyubimova Institute of Continuous Media Mechanics UB RAS; Perm State University
  • Anatoliy Pavlovich Lepikhin Mining Institute UB RAS; Perm State University
  • Yanina Nikolayevna Parshakova Institute of Continuous Media Mechanics UB RAS
  • Vadim Yur’yevich Kolshanov Institute of Continuous Media Mechanics UB RAS; Perm State University
  • Carlo Gualtieri University of Napoli Federico II
  • Stuart Nicholas Lane Institute of Earth Surface Dynamics, University of Lausanne
  • Bernard Roux Laboratoire Mécanique, Modélisation et Procédés Propres

DOI:

https://doi.org/10.7242/1999-6691/2020.13.3.29

Keywords:

river confluence, density stratification, computational experiment

Abstract

The confluence of rivers is characterized by highly complex internal processes. The hydrodynamic aspects of river confluences have received a lot of attention in recent years. For modeling purposes, it is generally assumed that the water densities of the rivers under consideration are close, and the density effects associated with their difference are neglected. In this approximation, we have previously investigated the confluence of the Vishera and Kama rivers. However, in some cases, the temperatures or salinity of the waters of merging rivers can differ significantly, and thereby the hydrodynamic mechanisms of mixing change considerably. In this paper, we examine the specific features of river confluences with and without taking into account density effects and by comparing both real and simplified channel (river) geometries. Simulations show that, at the density Froude number ∼1 which is observed in the rivers under consideration at the difference in salt concentration ~0.3 g/L, the mixing characteristics of these flows significantly change when they merge. The denser waters of the Vishera river begin to move under the less mineralized waters of the Kama river. As the Froude number exceeds the critical value, a fundamental rearrangement of coherent transverse structures occurs. These effects are more pronounced for the simplified model channel configuration, since taking into account the bottom heterogeneity significantly enhances vertical mixing. Earlier, the phenomenon in which the denser flow moves under the less dense flow was discovered by the authors for the confluence of the Chusovaya and Sylva rivers located in the backwater from the Kama hydroelectric power station.

Downloads

Download data is not yet available.
Supporting Agencies
Исследование выполнено при финансовой поддержке РФФИ (проект № 19-41-590013) и Министерства образования и науки Пермского края (соглашение № С-26/788).

References

Bouchez J., Lajeunesse E., Gaillardet J., France-Lanord C., Dutra-Maia P., Maurice L. Turbulent mixing in the Amazon River: The isotopic memory of confluences. Earth Planet. Sci. Lett., 2010, vol. 290, pp. 37-43. https://doi.org/10.1016/j.epsl.2009.11.054">https://doi.org/10.1016/j.epsl.2009.11.054

Lane S.N., Parsons D.R., Best J.L., Orfeo O., Kostaschuk R.A., Hardy R.J. Causes of rapid mixing at a junction of two large rivers: Rio Parana and Rio Paraguay, Argentina. JGR: Earth Surface, 2008, vol. 113, F02024. https://doi.org/10.1029/2006JF000745">https://doi.org/10.1029/2006JF000745

Mackay J.R. Lateral mixing of the Liard and Mackenzie rivers downstream from their confluence. Canadian Journal of Earth Sciences, 1970, vol. 7, pp. 111-124. https://doi.org/10.1139/e70-008">https://doi.org/10.1139/e70-008

Rathbun R.E., Rostad C.E. Lateral mixing in the Mississippi River below the confluence with the Ohio River. Water Resour. Res., 2004, vol. 40, W05207. https://doi.org/10.1029/2003WR002381">https://doi.org/10.1029/2003WR002381

Umar M., Rhoads B., Greenberg J.A. Use of multispectral satellite remote sensing to asses mixing of suspended sediment downstream of large river confluences. J. Hydrol., 2018, vol. 556, pp. 325-338. https://doi.org/10.1016/j.jhydrol.2017.11.026">https://doi.org/10.1016/j.jhydrol.2017.11.026

Lyubimova T.P., Lepikhin A.P., Parshakova Ya.N., Gualtieri C., Lane S., Roux B. Influence of hydrodynamic regimes on mixing of waters of confluent rivers. J. Appl. Mech. Tech. Phy., 2019, vol. 60, pp. 1220-1227. https://doi.org/10.1134/S0021894419070083">https://doi.org/10.1134/S0021894419070083

Prandtl L. Führer durch die strömungslehre [Fundamentals of Hydro- and Aeromechanics]. Braunschweig, Friedrich Vieweg u. Sohn, 1965. 523 p.

Lyubimova T., Lepikhin A., Konovalov V., Parshakova Ya., Tiunov A. Formation of the density currents in the zone of confluence of two rivers. J. Hydrol., 2014, vol. 508, pp. 328-342. http://dx.doi.org/10.1016/j.jhydrol.2013.10.041">http://dx.doi.org/10.1016/j.jhydrol.2013.10.041

Lepikhin A.P., Lyubimova T.P., Voznyak A.A., Parshakova Ya.N., Bogomolov A.V., Lyakhin Yu.S. Specific features of water quality regulation in process of its selective abstraction from reservoirs. Vodnoye khozyaystvo Rossii: problemy, tekhnologii, upravleniye – Water Sector of Russia: Problems, Technologies, Management, 2017, no. 3, pp. 56-68.

Brown G.L., Roshko A. On density effects and large structure in turbulent mixing layers. J. Fluid Mech., 1974, vol. 64, pp. 775-816. https://doi.org/10.1017/S002211207400190X">https://doi.org/10.1017/S002211207400190X

Taira D.E., Schettini E.B. Silvestrini J.H. Proc. of the 14th IUTAM ABCM Symposium on Laminar Turbulent Transition. Rio de Janeiro, Brazil, September 8-12, 2014. P. 536-542.

Cheng Z., Constantinescu G. Stratification effects on flow hydrodynamics and mixing at a confluence with a highly discordant bed and a relatively low velocity ratio. Water Resour. Res., 2018, vol. 54, pp. 4537-4562. https://doi.org/10.1029/2017WR022292">https://doi.org/10.1029/2017WR022292

Cheng Z., Constantinescu G. Stratification effects on hydrodynamics and mixing at a river confluence with a discordant bed. Environ. Fluid Mech., 2020, vol. 20, pp. 843-872. https://doi.org/10.1007/s10652-019-09725-6">https://doi.org/10.1007/s10652-019-09725-6

Horna-Munoz D., Constantinescu G., Rhoads B., Lewis Q., Sukhodolov A. Density effects at a concordant bed natural river confluence. Water Resour. Res., 2020, vol. 56, e2019WR026217. https://doi.org/10.1029/2019WR026217">https://doi.org/10.1029/2019WR026217

Lepihin A.P. On the problem building of the morphometric relation for alluvial River channels. Geograficheskiy vestnik – Geographical bulletin, 2015, no. 3(34), pp. 115-125.

Launder B.E., Spalding D.B. Lectures in mathematical models of turbulence. London; New York, Academic Press, 1972. 169 p.

Published

2020-12-30

Issue

Section

Articles

How to Cite

Lyubimova, T. P., Lepikhin, A. P., Parshakova, Y. N., Kolshanov, V. Y., Gualtieri, C. ., Lane, S. N., & Roux, B. . (2020). Hydrodynamic aspects of river confluence with different water densities. Computational Continuum Mechanics, 13(4), 381-392. https://doi.org/10.7242/1999-6691/2020.13.3.29