Exact solution for stable convective concentration flows of a Couette type

Authors

  • Natal’ya Vladimirovna Burmasheva Institute of Engineering Science UB RAS
  • Evgeniy Yur’yevich Prosviryakov Institute of Engineering Science UB RAS

DOI:

https://doi.org/10.7242/1999-6691/2020.13.3.27

Keywords:

diffusion layered flow, Navier-Stokes equation, exact solution, overdetermined system, stratification, return flows, countercurrents

Abstract

The paper presents an exact solution describing a steady-state diffusion layered Couette-type flow of a viscous incompressible fluid binary mixture, induced by specifying a parabolic wind at one of the boundaries of the flow region. The flow is modeled using the system of equations of concentration convection, which consists of the Navier-Stokes equations (in the Boussinesq approximation), the incompressibility equation, and the equation for changing the concentration of the light phase of a binary mixture. The solution of this nonlinear overdetermined system of equations is sought within the framework of the Lin-Sidorov-Aristov class. The solvability of the reduced system of equations with respect to the components of the velocity field, concentration and pressure fields is shown. A plane horizontal infinite layer of constant thickness is considered as the flow region. A distinctive feature of the presented exact solution is taking into account the impermeability property of a solid hydrophilic surface, which limits the fluid layer under consideration from below. In the course of analyzing the exact solution describing the distribution of the velocity field, it was shown that in some cases the flow can be reduced to a unidirectional one. In the general case, each of the nonzero components of the velocity vector can have at most one zero point inside the layer under consideration, and they will coincide only if the flow is reducible to a unidirectional one. It is shown that the corresponding shear stress field can be stratified into two zones, in each of which the stress retains its sign and changes it upon passing to another zone. The investigation of the concentration field revealed the fundamental possibility of stratification of the background concentration field into two zones compared to the reference value. At the same time, the background pressure field can be divided into three zones in relation to the reference level. Thus, the solution proposed can describe return flows localized (for certain combinations of edge parameters and physical characteristics of the fluid) near the boundaries of the considered fluid layer.

Downloads

Download data is not yet available.

References

Bulgakov S.N. Issledovaniye roli khalinnykh faktorov v formirovanii tsirkulyatsii i struktury vod Chernogo morya [Investigation of the role of chaline factors in the formation of the circulation and structure of the Black Sea]. PhD Dissertation, Marine Hydrophysical Institute, Sevastopol’, 1986. 155 p.

Bulgakov S.N., Korotaev G.K. Analiticheskaya model’ struynoy tsirkulyatsii v zamknutykh vodoyemakh [An analytical model of jet circulation in closed reservoirs]. Morskoy Gidrofizicheskiy Zhurnal – Soviet Journal of Physical Oceanography, 1987, no. 3, pp. 434-446.

Aristov S.N., Shvarts K.G. On the influence of salinity exchange on the circulation of a fluid in an enclosed basin.  Soviet journal of physical oceanography, 1991, vol. 2, pp. 293-298. https://doi.org/10.1007/BF02346081">https://doi.org/10.1007/BF02346081

Ovchinnikov I.M., Titov V.B. Anticiklonicheskaya zavikhrennost’ techeniy v pribrezhnoy zone Chernogo moray [Anti-cyclonic vorticity of currents in the offshore zone of the Black Sea]. DAN SSSR – Reports of the USSR Academy of Sciences, 1990, vol. 314, no. 5, pp. 1236-1239.

Ivanov V.A., Belokopytov V.N. Okeanographiya Chernogo morya [Oceanography of the Black Sea]. Sevastopol’, Marine Hydrophysical Institute, 2011. 212 p.

Zuev A.L. The rupture of a liquid layer by solutocapillary flow. Colloid J., 2007, vol. 69, pp. 286-293. https://doi.org/10.1134/S1061933X07030040">https://doi.org/10.1134/S1061933X07030040

Birikh R.V., Rudakov R.N. Effect of the adsorption-desorption process intensity on solutal convection near a drop in a horizontal channel. Fluid Dyn., 2011, vol. 46, pp. 131-137. https://doi.org/10.1134/S0015462811010157">https://doi.org/10.1134/S0015462811010157

Kholpanov L.P., Zaporozhets E.P., Zibert G.K., Kashitskiy Yu.A. Matematicheskoye modelirovaniye nelineynykh termogidrogazodinamicheskikh protsessov v mnogokomponentnykh struynykh techeniyakh [Mathematical modeling of nonlinear thermohydrogasdynamic processes in multicomponent jet flows]. Moscow, Nauka, 1998. 320 p.

Kossov V., Mukamedenkyzy V., Fedorenko O. Some mixing features of ternary gas mixtures on theregime transition boundary between two mixing regimes - diffusion to concentration gravitational convection -in quasi-stationary conditions. Vestnik MGOU. Sriya: Estestvenniye nauki – Bulletin MSRU. Series: Natural sciences, 2018, no. 2,
pp. 125-133. https://doi.org/10.18384/2310-7189-2018-2-125-133">https://doi.org/10.18384/2310-7189-2018-2-125-133

Popov V.G., Sidenko D.V., TokarevS.A. The mechanism and geochemical consequences of density convection in hydrostratysphera. Izv. vuzov. Severo-Kavkazskiy region. Tekhnicheskiye nauki – University news. North-Caucasian region. Technical sciences series, 2012, no. 6(169), pp. 97-100.

Kossov V.N., Fedorenko O.V., Zhakebaev D.B., Kizbaev A.P. Peculiarities of the rise of structured formations at the boundary of the change of the regimes "diffusion-concentration convection" at an isothermal mixing of a binary mixture equally diluted by the third component. Thermophys. Aeromech., 2019, vol. 26, pp. 27-35. https://doi.org/10.1134/S0869864319010049">https://doi.org/10.1134/S0869864319010049

Krasnoperov Y.I., Sklyarenko M.S. A photometric method for determining the diffusivity of dyes in aqueous solutions in a thin horizontal cell. Instrum. Exp. Tech., 2017, vol. 60, pp. 896-901. https://doi.org/10.1134/S0020441217060161">https://doi.org/10.1134/S0020441217060161

Zhukov M.Yu., Tsyvenkova O.A. Simulation of gravitational concentration convection in isotachophoresis. Izv. vuzov. Severo-Kavkazskiy region. Estestvennye nauki – Bulletin of higher education institutes. North Caucasus region. Natural science, 2019, no. 4(204), pp. 27-35. https://doi.org/10.23683/0321-3005-2019-4-27-35">https://doi.org/10.23683/0321-3005-2019-4-27-35

Cherepanov A.N., Cherepanova V.K., Sharapov V.N. Possible role of thermal concentration convection during the fractionation of components in basic intrusions. Dokl. Earth Sci., 2005, vol. 404, pp. 1126-1130.

Zavgorodnii P.F., Kolesnik V.I., Povkh I.L., Sevost'yanov G.M. Concentration convection in a solidifying melt. J. Appl. Mech. Tech. Phys., 1977, vol. 18, pp. 812-815. https://doi.org/10.1007/BF00851157">https://doi.org/10.1007/BF00851157

Tao C., Wu W.-T., Massoudi M. Natural convection in a non-newtonian fluid: effects of particle concentration. Fluids, 2019, no. 4, pp. 192-206. https://doi.org/10.3390/fluids4040192">https://doi.org/10.3390/fluids4040192

Gershuni G.Z., Zhukhovitskii E.M. Convective stability of incompressible fluids. Keter Publishing House, 1976. 330 p.

Kopbosynov B.K., Pukhnachev V.V. Termokapillyarnoye dvizheniye v tonkom sloye zhidkosti [Thermocapillary motion in a thin liquid layer]. // Gidromekhanika i processy perenosa v nevesomosti [Hydromechanics and transport processes in zero gravity], ed. by V.S. Avduevskii. Sverdlovsk: UNTs AN SSSR, 1983. 167 p. Pp. 116-125.

Korobkin A.A. Two-dimensional problem of the impact of a vertical wall on a layer of a partially aerated liquid. J. Appl. Mech. Tech. Phys., 2006, vol. 47, pp. 643-653. https://doi.org/10.1007/s10808-006-0100-6">https://doi.org/10.1007/s10808-006-0100-6

Zhdanov S.K., Vlasov V.L. “Shallow-water” and “deep-water” approximations in the theory of the disruptive instability of thin current-carrying layers. J. Exp. Theor. Phys., 1998, vol. 86, pp. 717-719. https://doi.org/10.1134/1.558531">https://doi.org/10.1134/1.558531

Oron A., Davis S.H., Bankoff S.G. Long-scale evolution of thin liquid films. Rev. Mod. Phys., 1997, vol. 69, pp. 931-980. https://doi.org/10.1103/RevModPhys.69.931">https://doi.org/10.1103/RevModPhys.69.931

Duffy B.R., Langer M., Wilson S.K. Closed-form solution of a thermocapillary free-film problem due to Pukhnachev. Eur. J. Appl. Math., 2015, vol. 26, pp. 721-741. https://doi.org/10.1017/S095679251500008X">https://doi.org/10.1017/S095679251500008X

Couette M. Études sur le frottement des liquides [Studies on the friction of liquids]. Ann. Chim. Phys., 1890, vol. 21, pp. 433-510.

Poiseuille J. Recherches expérimenteles sur le mouvement des liquides dans les tubes de trés petits diamétres [Experimental research on the movement of liquids in tubes of very small diameters]. Comptes rendus hebdomadaires des s’eances de l'Acadmemie des Sciences – Weekly reports of the sessions of the Academy of Sciences, 1840, vol. 11,
 pp. 961-967.

Ekman V.W. On the influence of the earth's rotation on ocean-currents. Ark. Mat. Astron. Fys., 1905, vol. 2, no. 11,
pp. 1-53.

Stokes G.G. On the effect of the internal friction of fluid on the motion of pendulums. Camb. Philo. Trans., 1851, vol. 9, pp. 8-106.

Stokes G.G. On the theories of internal friction of fluids in motion, and of the equilibrium and motion of elastic solids. Transactions of the Cambridge Philosophical Society, 1845, vol. 8, pp. 287-319. https://doi.org/10.1017/CBO9780511702242.005">https://doi.org/10.1017/CBO9780511702242.005

Aristov S.N., Knyazev D.V., Polyanin A.D. Exact solutions of the Navier-Stokes equations with the linear dependence of velocity components on two space variables. Theor. Found. Chem. Eng., 2009, vol. 43, no. 5, pp. 642–662. https://doi.org/10.1134/S0040579509050066">https://doi.org/10.1134/S0040579509050066

Muradov Kh., Davies D. Linear non-adiabatic flow of an incompressible fluid in a porous layer – Review, adaptation and analysis of the available temperature models and solutions. J. Petrol. Sci. Eng., 2012, vol. 86-87, pp. 1-14. https://doi.org/10.1016/j.petrol.2012.03.011">https://doi.org/10.1016/j.petrol.2012.03.011

Yun T. Review on analytical solutions for slump flow of cement paste. Int. J. Highw. Eng., 2016, vol. 18, pp. 21-32. https://doi.org/10.7855/IJHE.2016.18.3.021">https://doi.org/10.7855/IJHE.2016.18.3.021

Published

2020-09-30

Issue

Section

Articles

How to Cite

Burmasheva, N. V., & Prosviryakov, E. Y. (2020). Exact solution for stable convective concentration flows of a Couette type. Computational Continuum Mechanics, 13(3), 337-349. https://doi.org/10.7242/1999-6691/2020.13.3.27