Mathematical modeling of forest fire extinguishing using water capsules with a thermoactive shell

Authors

  • Liliya Yur’yevna Kataeva Nizhny Novgorod State Technical University n.a. R.E. Alekseev; Samara State University of Transport
  • Mariya Nikolayevna Ilicheva Nizhny Novgorod State Technical University n.a. R.E. Alekseev
  • Aleksandr Andreyevich Loshchilov Nizhny Novgorod State Technical University n.a. R.E. Alekseev

DOI:

https://doi.org/10.7242/1999-6691/2020.13.3.26

Keywords:

forest fire, fire extinguishing, physicochemical hydromechanics, numerical modeling, water capsules, thermoactive shell

Abstract

The paper proposes a new mathematical model of the process of extinguishing a forest fire with dispersed water delivered to the fire source with water capsules with a thermoactive shell. When moving in a medium with a temperature above the critical, the capsule shell accumulates the integral value of the damage with the intensity proportional to the distance traveled and the critical temperature exceed. When the integral parameter of the thermal stability of the shell is reached, the capsule ruptures and water is released in dispersed form. During the sequential discharge of several capsules, each of them is affected by the temperature of the medium formed after exposure to the previous capsules. After calculating the distribution of dispersed water from the capsules, the calculation of the dynamics of a forest fire based on a physical and mathematical model is resumed. The analysis of key parameters and effects that determine the effectiveness of extinguishing is carried out. The extinguishing dynamics is shown for a different number of capsules per unit length of the fire front, an integral parameter of thermal stability, and the amount of water in the capsule. The results of numerical modeling showed that in the case of a small value of the capsule integral parameter of thermal stability, the capsule ruptures in the upper part of the vegetation layer, and therefore a great number of water capsules must be sequentially dumped to extinguish. Too high value of the thermal stability coefficient leads to rupture of capsules on the ground and to continuation of the combustion process in the upper part of the vegetation layer. The greatest efficiency of forest fire extinguishing occurs when the thermoactive shell of capsules ruptures in the middle of the combustion front. Sequential discharge of capsules allows one to distribute water vertically, more fully covering the zone of vulnerability of the fire. It is shown that the use of capsules with a thermoactive shell allows one to deliver water in the zone of vulnerability of the fire, thereby providing more effective firefighting.

Downloads

Download data is not yet available.

References

Vile´n T., Fernandes P.M. Forest fires in mediterranean countries: CO2 emissions and mitigation possibilities through prescribed burning. Environ. Manag., 2011, vol. 48, pp. 558-567. https://doi.org/10.1007/s00267-011-9681-9">https://doi.org/10.1007/s00267-011-9681-9

Van der Werf G.R., Randerson J.T., Giglio L., van Leeuwen T.T., Chen Y., Rogers B.M., Mu M., van Marle M.J.E., Morton D.C., Collatz G.J., Yokelson R.J., Kasibhatla P.S. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data, 2017, vol. 9, pp. 697-720. https://doi.org/10.5194/essd-9-697-2017">https://doi.org/10.5194/essd-9-697-2017

Kovalev A.N., Zhuravleva L.A. Perspective directions of suppressing forest and steppe fires. Nauchnaya zhizn’ – Scientific Life, 2012, no. 4, pp. 153-157.

Khasanov I.R., Moskvilin E.A. XV Scientific-practical conf. «Problems of burning and extinguishing fires at the turn of the century», Moscow, November 3-4, 1999. Moscow, All-Russian Scientific Research Institute of Fire Protection of the Ministry of Internal Affairs of Russia, 1999. Part 1, pp. 300-301.

Abduragimov I.M., Kuprin G.N., Kuprin D.S. Fast-hardening foams – a new era in fighting forest fires Pozhary i ChS, 2016, no. 2, pp. 7-13. https://doi.org/10.25257/FE.2016.2.7-13">https://doi.org/10.25257/FE.2016.2.7-13

Kopylov N.P., Karpov V.N., Kuznetsov A.E., D.V. Fedotkin, Khasanov I.R., Sushkina E.Yu. Peculiarities of the forest firefighting with the use of aircrafts. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics, 2019, no. 59, pp. 79-86. https://doi.org/10.17223/19988621/59/8">https://doi.org/10.17223/19988621/59/8

Satoh K., Maeda I., Kuwahara K., Yang K.T. A numerical study of water dump in aerial fire fighting. Fire Safety Science, 2005, vol. 8, pp. 777-787. https://doi.org/10.3801/IAFSS.FSS.8-777">https://doi.org/10.3801/IAFSS.FSS.8-777

Alekhanov Yu.V., Bliznetsov M.V., Vlasov Yu.A., Dudin V.I., Levushov A.E., Logvinov A.I., Lomtev S.A., Meshkov E.E. Interaction of dispersed water with flame. Tech. Phys. Lett., 2003, vol. 29, pp. 218-220. https://doi.org/10.1134/1.1565638">https://doi.org/10.1134/1.1565638

Meshkov E.E., Oreshkov V.O., Yanbaev G.M. Droplet cloud formation upon disintegration of free-falling water ball. Tech. Phys. Lett., 2011, vol. 37, pp. 728-730. https://doi.org/10.1134/S1063785011080116">https://doi.org/10.1134/S1063785011080116

SEM-SAFE® by Danfoss High-Pressure Water Mist Fire Fighting System https://semsafe.danfoss.com/technologies/watermist/">https://semsafe.danfoss.com/technologies/watermist/ (accessed 04 April 2020).

Raoult F., Lacour S., Carissimo B., Trinquet F., Delahaye A., Fournaison L. CFD water spray model development and physical parameter study on the evaporative cooling. Appl. Therm. Eng., 2019, vol. 149, pp. 960-974. https://doi.org/10.1016/j.applthermaleng.2018.12.063">https://doi.org/10.1016/j.applthermaleng.2018.12.063

Śmigielski G., Lewandowski D., Dygdała R.S., Stefański K., Urbaniak W. Water capsule flight – a theoretical analysis and experimental verification. Metrology and Measurement Systems, 2009, vol. 16, pp. 313-322. https://www.researchgate.net/publication/236853073_Water_capsule_flight_-_A_theoretical_analysis_experimental_setup_and_experimental_verification">https://www.researchgate.net/publication/236853073_Water_capsule_flight_-_A_theoretical_analysis_experimental_setup_and_experimental_verification (accessed 04 November 2020).

Śmigielski G., Dygdała R., Kunz M., Lewandowski D., Stefański K. Proc. of the XIX IMEKO World Congress on Fundamental and Applied Metrology. Lisbon, Portugal, September 6-11, 2009. Pp. 2208-2213.

Li Z., Wang Q. Experimental study of explosive water mist extinguishing fire. Procedia Engineering, 2011, vol. 11, pp. 258-267. https://doi.org/10.1016/j.proeng.2011.04.655">https://doi.org/10.1016/j.proeng.2011.04.655

Dale E.K. Simulation and modelling of water spray in the 3D explosion simulation program FLACS. The University of Bergen, 2004. 149 p. http://bora.uib.no/bitstream/handle/1956/1326/Masteroppgave-dale.pdf?sequence=1&isAllowed=y">http://bora.uib.no/bitstream/handle/1956/1326/Masteroppgave-dale.pdf?sequence=1&isAllowed=y (accessed: 04 april 2020).

https://www.emicontrols.com/en/fire-fighting/application-areas/forest-fires">https://www.emicontrols.com/en/fire-fighting/application-areas/forest-fires (accessed: 04april2020).

Aydin B., Selvi E., Tao J., Starek M.J. Use of fire-extinguishing balls for a conceptual system of drone-assisted wildfire fighting. Drones, 2019, vol. 3, 17. https://doi.org/10.3390/drones3010017">https://doi.org/10.3390/drones3010017

Nakoryakov V.E., Kuznetsov G.V., Strizhak P.A. Limited transverse sizes of a droplet cloud under disintegration of a water mass during its fall from a great height. Dokl. Phys., 2017, vol. 62, pp. 333-336. https://doi.org/10.1134/S1028335817070060">https://doi.org/10.1134/S1028335817070060

Zhdanova A.O., Kuznetsov G.V., Strizhak P.A., SHlegel’ N.E. Proc. of the Seventh Russian Conference on Heat Transfer. Moscow, 22-26 October 2018. Moscow, Izdat. dom MEI, 2018. Pp. 236-239.

Zhdanova А.O., Kuznetsov G.V., Nyashina G.S., Voitkov I.S. Interaction of a liquid aerosol with the combustion front of a forest combustible material under the conditions of countercurrent air flow. J. Eng. Phys. Thermophy., 2019, vol. 92, pp. 687-693. https://doi.org/10.1007/s10891-019-01978-8">https://doi.org/10.1007/s10891-019-01978-8

Volkov R.S., Kopylov N.P., Kuznetsov G.V., Khasanov I.R. Experimental investigation of the suppression of crown and ground forest fires. . J. Eng. Phys. Thermophy., 2019, vol. 92, pp. 1453-1465. https://doi.org/10.1007/s10891-019-02064-9">https://doi.org/10.1007/s10891-019-02064-9

Nijdam J.J., Guo B., Fletcher D.F., Langrish T.A.G. Lagrangian and Eulerian models for simulating turbulent dispersion and coalescence of droplets within a spray. Appl. Math. Model., 2006, vol. 30, pp. 1196-1211. https://doi.org/10.1016/j.apm.2006.02.001">https://doi.org/10.1016/j.apm.2006.02.001

Beau P.A. Modelisation de l’atomisation d’un jet liquid. Application aux sprays diesel. PhD Dissertation, Rouen: University of Rouen. 2006. 205 p.

Babinsky E., Sojka P.E. Modeling drop size distributions. Progr. Energ. Combust. Sci., 2002, vol. 28, pp. 303-329. https://doi.org/10.1016/S0360-1285(02)00004-7">https://doi.org/10.1016/S0360-1285(02)00004-7

https://hightech.fm/2020/01/22/elbit-systems">https://hightech.fm/2020/01/22/elbit-systems (accessed: 04 august 2020).

https://caylym.com/">https://caylym.com/ (accessed: 04 august 2020).

Grishin A.M. Matematicheskoye modelirovaniye lesnykh pozharov i novyye sposoby bor’by s nimi [Mathematical modeling of forest fires and new ways to combat them]. Novosibirsk, Nauka, 1992. 407 p.

Kataeva L.Y., Maslennikov D.A., Loshchilova N.A. On the laws of combustion wave suppression by free water in a homogeneous porous layer of organic combustible materials. Fluid Dyn., 2016, vol. 51, pp. 389-399. https://doi.org/10.1134/S001546281603011X">https://doi.org/10.1134/S001546281603011X

Babkin A.V., Kolpakov V.I., Okhitin V.N., Selivanov V.V. Chislennyye metody v zadachakh fiziki bystroprotekayushchikh protsessov [Numerical methods in problems of physics of fast processes]. Moscow, Izd-vo MGTU im. N.E. Baumana, 2006. 520 p.

Samarskiy A.A., Gulin A.V. Chislennyye metody [Numerical methods]. Moscow, Nauka, 1989. 432 p.

Maslennikov D.A., Belotserkovskaya I.E., Loshchilov S.A., Katayeva L.Yu. Osobennosti matematicheskogo modelirovaniya rasprostraneniya summarnogo teplovogo potoka pri lesnykh pozharakh [Features of mathematical modeling of the spread of the total heat flow during forest fires]. N.Novgorod, Stimul-ST, 2012. 110 p.

Katayeva L.Yu., Maslennikov D.A., Belotserkovskaya I.E. Chislennoye modelirovaniye dinamiki pozhara s uchetom rel’yefa mestnosti i vneshnego polya skorostey [Numerical modeling of fire dynamics taking into account the terrain and external velocity field]. Pozharovzryvobezopasnost’ – Fire and Explosion Safety, 2012, vol. 21, no. 12, pp. 49-58.

Abduragimov I.M., Govorov V.YU., Makarov V.E. Fiziko-khimicheskiye osnovy razvitiya i tusheniya pozharov [Physicochemical bases of development and extinguishing of fires]. Moscow, VIPTSh MVD SSSR, 1980. 256 p.

Gundar S.V., Denisov A.N. XX scientific and technical conf. "Security Systems – 2011". Moscow, October 27, 2011. Moscow, Academy of State Fire Service of the Ministry of Emergency Situations of Russia, 2011. Pp. 166-169.

Gundar S.V., Denisov A.N., Trifonov N.Ya. Priyemlemyy lesopozharnyy risk [Acceptable forest fire risk]. Pozharovzryvobezopasnost’ – Fire and Explosion Safety, 2009, vol. 18, no. 3, pp. 57-66.

Published

2020-09-30

Issue

Section

Articles

How to Cite

Kataeva, L. Y., Ilicheva, M. N., & Loshchilov, A. A. (2020). Mathematical modeling of forest fire extinguishing using water capsules with a thermoactive shell. Computational Continuum Mechanics, 13(3), 320-336. https://doi.org/10.7242/1999-6691/2020.13.3.26