Energy approach to calculation of forces acting on solid bodies in ferrofluids

Authors

  • Aleksey Sergeyevich Ivanov Institute of Continuous Media Mechanics UB RAS

DOI:

https://doi.org/10.7242/1999-6691/2020.13.3.25

Keywords:

ferrofluid, floating of bodies, magnetic field, finite element method, FEMM, thermodynamic potential

Abstract

For calculations of magnetic forces acting on solid bodies immersed in magnetized ferrofluid (FF), use of the energy approach is discussed The limitations of the standard approach to the calculation of these magnetic forces are analyzed using the Bernoulli equation for the FF and the equation for the magnetic pressure jump at the interface. The literature review reveals the advantages of the energy approach over the standard approach, in which the analytical expressions for the forces depend on the body shape, and the final numerical result is affected by a significant error in calculating the magnetic fields at the "solid body-FF" interface. The energy approach, on the contrary, allows using standard functions of computational packages. Choosing a thermodynamic potential for the adequate description of experimental measurements is discussed. The energy method is justified via the statement of the problem and verified by comparing the numerical results obtained for the FF with the nonlinear magnetization law, which has not yet been carried either analytically or numerically due to the widespread use of simplifying assumptions (approximation of weak and strong magnetic fields, non-induction approximation). A pairwise comparison of the magnetic forces calculated in the framework of the energy approach with the results of the laboratory experiment and the data obtained by a standard approach provides evidence that the energy approach can be used to calculate forces acting on solids in the FF.

Downloads

Download data is not yet available.

References

Rosensweig R.E. Ferrohydrodynamics. Cambridge University Press, 1985. 344 p.

Rosensweig R.E. Buoyancy and stable levitation of a magnetic body immersed in a magnetizable fluid. Nature, 1966, vol. 210, pp. 613-614. https://doi.org/10.1038/210613a0">https://doi.org/10.1038/210613a0

Rosensweig R.E. Fluidmagnetic buoyancyю AIAA J., 1966, vol. 4, pp. 1751-1758. https://doi.org/10.2514/3.3773">https://doi.org/10.2514/3.3773

Berkovsky B.M., Medvedev V.F., Krakov M.S. Magnetic fluids: Engineering applications. Oxford University Press, 1993. 256 p.

Pshenichnikov A.F., Mekhonoshin V.V., Lebedev A.V. Magneto-granulometric analysis of concentrated ferrocolloids. J. Magn. Magn. Mater., 1996, vol. 161, pp. 94-102. https://doi.org/10.1016/S0304-8853(96)00067-4">https://doi.org/10.1016/S0304-8853(96)00067-4

Ivanov A.O., Kuznetsova O.B. Magnetogranulometric analysis of ferrocolloids: second-order modified mean field theory. Colloid J., 2006, vol. 68, pp. 430-440. https://doi.org/10.1134/S1061933X06040065">https://doi.org/10.1134/S1061933X06040065

Cebers A.O. Nineth Riga Conf. on Magnetohydrodynamics. Salaspils, 1978. Vol. 3, pp. 129-130.

Blums E., Cebers A., Maiorov M.M. Magnetic fluids. Walter de Gruyter, 1997. 416 p.

Vislovich A.N., Krakov M.S. 

Eleventh Riga Conf. on Magnetohydrodynamics. Riga, 1984. Vol. 3, pp. 187-190.

Vislovich A. N., Lobko S.I., Lobko G.S. Interaction of solid bodies suspended in a magnetic liquid in a homogeneous magnetic field. Magnetohydrodynamics, 1986, vol. 22, no. 4, pp. 377-384. http://doi.org/10.22364/mhd">http://doi.org/10.22364/mhd

Kvitantsev A.S., Naletova V.A., Turkov V.A. Levitation of magnets and paramagnetic bodies in vessels filled with magnetic fluid. Fluid Dyn., 2002, vol. 37, pp. 361-368. https://doi.org/10.1023/A:1019698205112">https://doi.org/10.1023/A:1019698205112

Naletova V.A., Kvitantsev A.S., Turkov V.A. Movement of a magnet and a paramagnetic body inside a vessel with a magnetic fluid. J. Magn. Magn. Mater., 2003, vol. 258-259, pp. 439-442. https://doi.org/">https://doi.org/https://doi.org/10.1016/S0304-8853(02)01089-2">10.1016/S0304-8853(02)01089-2

Pelevina D.A., Sharova O.A., Merkulov D.I., Turkov V.A., Naletova V.A. Spherical magnetizable body partially immersed in a magnetic fluid in a uniform magnetic field. J. Magn. Magn. Mater., 2020, vol. 494, 165751. https://doi.org/10.1016/j.jmmm.2019.165751">https://doi.org/10.1016/j.jmmm.2019.165751

Qian L., Li D. Use of magnetic fluid in accelerometers. J. Sensor., 2014, vol. 2014, 375623. https://doi.org/10.1155/2014/375623">https://doi.org/10.1155/2014/375623

Gogosov V.V., Smolkin R.D., Krokhmal' V.S., Saiko O.P., Mangov L.I., Nozkodubov V.I. Industrial separators based on magnetic fluids (a survey). Magnetohydrodynamics, 1994, vol. 30, no. 1, pp. 96-103. http://doi.org/10.22364/mhd">http://doi.org/10.22364/mhd

Coulomb J.L. A methodology for the determination of global electromechanical quantities from a finite element analysis and its application to the evaluation of magnetic forces, torques and stiffness. IEEE Trans. Magn., 1983, vol. 19(6), pp. 2514-2519. https://doi.org/10.1109/TMAG.1983.1062812">https://doi.org/10.1109/TMAG.1983.1062812

Henrotte F., Hameyer K. Computation of electromagnetic force densities: Maxwell stress tensor vs. virtual work principle. J. Comp. App. Math., 2004, vol. 168, pp. 235-243. https://doi.org/10.1016/j.cam.2003.06.012">https://doi.org/10.1016/j.cam.2003.06.012

Pshenichnikov A.F., Burkova E.N. Effect of demagnetizing fields on particle spatial distribution in magnetic fluids. Magnetohydrodynamics, 2012, vol. 48, pp. 503-514. https://doi.org/10.22364/mhd.48.3.4">https://doi.org/10.22364/mhd.48.3.4

Pshenichnikov A.F., Burkova E.N. On influence of magnetophoresis and interparticle interactions on floating of permanent magnet in magnetic fluid. Vestnik PGU. Fizika – Bulletin of Perm University. Physics, 2016, no. 34(3), pp. 32-41. http://dx.doi.org/10.17072/1994-3598-2016-3-32-41">http://dx.doi.org/10.17072/1994-3598-2016-3-32-41

Landau L.D., Lifshitz E.M. Electrodynamics of continuous media. Pergamon Press, 1960. 417 p.

Khokhryakova (Bushueva) C.A., Pshenichnikov A.F., Lebedev A.V. Determination of the weight of a non-magnetic body, immersed in a magnetic fluid exposed to uniform magnetic fluid. Magnetohydrodynamics, 2019, Vol. 55, pp. 73-78. https://doi.org/10.22364/mhd.55.1-2.9">https://doi.org/10.22364/mhd.55.1-2.9

Meeker D. Improvised open boundary conditions for magnetic finite elements. IEEE Trans. Magn., 2013, vol. 49(10), pp. 5243-5247. https://doi.org/10.1109/TMAG.2013.2260348">https://doi.org/10.1109/TMAG.2013.2260348

Published

2020-09-30

Issue

Section

Articles

How to Cite

Ivanov, A. S. (2020). Energy approach to calculation of forces acting on solid bodies in ferrofluids. Computational Continuum Mechanics, 13(3), 311-319. https://doi.org/10.7242/1999-6691/2020.13.3.25