To the theory of convective flows in a rotating stratified medium over a thermally inhomogeneous surface

Authors

  • Lev Khanaanovich Ingel Research and Production Association “Typhoon”; Obukhov Institute of Atmospheric Physics RAS
  • Aleksandr Arkad’yevich Makosko Obukhov Institute of Atmospheric Physics RAS

DOI:

https://doi.org/10.7242/1999-6691/2020.13.3.23

Keywords:

convective flows, horizontal thermal inhomogeneities, linear theory, stratification, rotation, atmosphere, helicity

Abstract

A theoretical model of circulations over a thermally inhomogeneous horizontal surface in a gravity field is considered. The model is more general than that used in a number of previous works. It is free from the assumption about the relative thinness of the Ekman boundary layer, which (although not always justified) significantly simplified the calculations, since it was associated with the presence of a small parameter in the problem. On the basis of the proposed model, an analytical solution is found for a linear stationary two-dimensional convective flow problem in a semi-infinite stably stratified medium rotating around a vertical axis. Constitutive parameters are introduced - analogs of the Rayleigh and Taylor numbers, in which a given horizontal scale of thermal inhomogeneities appears as a spatial scale. For mesoscale atmospheric currents, which are characterized by very large values of these numbers, the consideration is limited to the case when the values of the Rayleigh numbers are much larger than the values of the Taylor numbers, but less than the latter to the 3/2 power (a situation typical for such atmospheric currents). Relationships for analyzing the dependences of the components of velocity and helicity on the parameters of the problem are obtained. A number of general statements about the ratios of different helicity "components" in the discussed thermal circulations, in particular, in atmospheric currents with characteristic horizontal scales of the order of hundreds of kilometers, have been proved. Examples of numerical calculations of the vertical distribution of these components are given.

Downloads

Download data is not yet available.

References

Lin Y.-L. Mesoscale dynamics. Cambridge: Cambridge University Press, 2007. 646 p. https://doi.org/10.1017/CBO9780511619649">https://doi.org/10.1017/CBO9780511619649

Gebhart B., Jaluria Y., Mahajan R.L., Sammakia B. Buoyancy-induced flows and transport. Springer, 1988. 1001 p.

Perestenko O.V., Ingel L.Kh. Linear theory of nonsteady-state convection in a stably stratified rotating medium above a thermally nonuniform surface. Izv. Atmos. Ocean Phys., 1990, vol. 26, no. 9, pp. 666-673.

Ingel’ L.Kh., Belyaeva M.V. Toward the theory of convection in a rotating stratified medium over a thermally inhomogeneous horizontal surface. J. Eng. Phys. Thermophy., 2011, vol. 84, pp. 820-826. https://doi.org/10.1007/s10891-011-0539-z">https://doi.org/10.1007/s10891-011-0539-z

Svirkunov P.N., Fel’de E.A. Struktura konvektivnykh techeniy nad istochnikami teplovydeleniya v ustoychivo stratifitsirovannoy atmosphere [Structure of convective flows above sources of heat release into a stably stratified atmosphere]. Meteorologiya i Gidrologiya, 1988, no. 1, pp. 17-23.

Ingel L.Kh., Makosko A.A. On analogy between thermal and “gravity” mesoscale atmospheric circulations. Geofizicheskiye issledovaniya – Geophys. Res., 2019, vol. 20, no. 3, pp. 36-44. https://doi.org/10.21455/gr2019.3-3">https://doi.org/10.21455/gr2019.3-3

Lilly D.K. The Structure, energetics and propagation of rotating convective storms. Part II: Helicity and storm stabilization. J. Atmos. Sci., 1986, vol. 43, pp. 126-140. https://doi.org/10.1175/1520-0469(1986)043%3c0126:TSEAPO%3e2.0.CO;2">https://doi.org/10.1175/1520-0469(1986)043<0126:TSEAPO>2.0.CO;2

Molinari J., Vollaro D. Extreme helicity and intense convective towers in hurricane Bonnie. Mon. Wea. Rev., 2008, vol. 136, pp. 4355-4372. https://doi.org/10.1175/2008MWR2423.1">https://doi.org/10.1175/2008MWR2423.1

Kurgansky M.V. Helicity in dynamic atmospheric processes. Izv. Atmos. Ocean Phys., 2017, vol. 53, pp. 127-141. https://doi.org/10.1134/S0001433817020074">https://doi.org/10.1134/S0001433817020074

Han Y., Wu R., Fang J. Shearing wind helicity and thermal wind helicity. Adv. Atmos. Sci., 2006, vol. 23, pp. 504-512. https://doi.org/10.1007/s00376-006-0504-5">https://doi.org/10.1007/s00376-006-0504-5

Levina G.V., Montgomery M.T. Tropical cyclogenesis: a numerical diagnosis based on helical flow organization. J. Phys.: Conf. Ser., 2014, vol. 544, 012013. https://doi.org/10.1088/1742-6596/544/1/012013">https://doi.org/10.1088/1742-6596/544/1/012013

Sukhanovskii A., Evgrafova A., Popova E. Helicity of convective flows from localized heat source in a rotating layer. Arch. Mech. Eng., 2017, vol. 64, pp. 177-188. https://doi.org/10.1515/meceng-2017-0011">https://doi.org/10.1515/meceng-2017-0011

Teimurazov A., Sukhanovskii A., Evgrafova A., Stepanov R. Helicity sources in a rotating convection. J. Phys.: Conf. Ser., 2017, vol. 899, 022017. https://doi.org/10.1088/1742-6596/899/2/022017">https://doi.org/10.1088/1742-6596/899/2/022017

Pedlosky J. Geophysical fluid dynamics. Springer-Verlag, 1987. 710 p.

Gill A.E. Atmosphere-Ocean Dynamics. Academic Press, 1982. 682 p.

Makosko A.A., Rubinshtein K.G. Study of a helical Asian monsoon based on reanalysis of data and the results of numerical modeling of atmospheric circulation with account for the inhomogeneous gravity force. Dokl. Earth Sc., 2014, vol. 459, pp. 1451-1456. https://doi.org/10.1134/S1028334X14110130">https://doi.org/10.1134/S1028334X14110130

Makosko А.А., Maksimenkov L.O. To the prognostic meaning for the one of criteria for helicity estimation in atmosphere. IOP Conf. Ser.: Earth Environ. Sci., 2019, vol. 231, 012033. https://doi.org/10.1088/1755-1315/231/1/012033">https://doi.org/10.1088/1755-1315/231/1/012033

Published

2020-09-30

Issue

Section

Articles

How to Cite

Ingel, L. K., & Makosko, A. A. (2020). To the theory of convective flows in a rotating stratified medium over a thermally inhomogeneous surface. Computational Continuum Mechanics, 13(3), 288-297. https://doi.org/10.7242/1999-6691/2020.13.3.23