Rheometric flows of concentrated suspensions of solid particles
DOI:
https://doi.org/10.7242/1999-6691/2020.13.3.21Keywords:
highly concentrated suspensions, rheological model, rheometric flows, analytical solutions, non-Newtonian disperse medium, numerical solutionAbstract
Publications on experimental and theoretical studies of the rheological properties of concentrated suspensions of solid particles have been analyzed. According to the currently accepted ideas, the rheology of suspensions is considered as a result of contact interaction of their constituent particles caused by the action of external forces, the formation and destruction of various types of conglomerate structures. A new rheological model of a highly concentrated suspension of solid particles in a Newtonian fluid is proposed, which describes both a continuous and discontinuous increase in the effective viscosity with a uniform increase in shear stresses. Accurate analytical formulas are obtained for the velocity profiles of suspensions in rotational viscometers “cone-plane” and “cylinder-cylinder”, as well as in a slit viscometer. The proposed model is modified to take into account the non-Newtonian properties of a dispersion medium, which exhibits pseudoplastic properties at low strain rates, and dilatant properties at large strain rates. The effective viscosity of such a suspension is presented as the sum of the contributions from the dispersion medium and the solid particles of the dispersed phase. To describe the rheology of the dispersion phase, the Ellis model was used. The velocity profiles in a pressure driven flat channel are obtained numerically by the finite element method. It is shown that, depending on the parameters of the model, the velocity profiles in a flat channel can take various complex forms.
Downloads
References
Verdier C. Rheological properties of living materials. From cells to tissues. J. Theor. Med., 2003, vol. 5, no. 2, pp. 67-91. https://doi.org/10.1080/10273360410001678083">https://doi.org/10.1080/10273360410001678083
Khodakov G.S. Reologiya suspenziy. Teoriya fazovogo techeniyai eye eksperimental’noye obosnovaniye [Suspension rheology. The theory of phase flow and its experimental substantiation]. Ros. khim. zh. (ZH. Ros. khim. ob-vaim. D.I. Mendeleyeva), 2003, vol. XLVII, no. 2, pp. 33-43.
Guillou S., Makhloufi R. Effect of a shear-thickening rheological behaviour on the friction coefficient in a plane channel flow: A study by direct numerical simulation. Journal of Non-Newtonian Fluid Mechanics, 2007, vol. 144, pp. 73-86. https://doi.org/10.1016/j.jnnfm.2007.03.008">https://doi.org/10.1016/j.jnnfm.2007.03.008
Galindo-Rosales F.J., Rubio-Hernandez F.J., Velazquez-Navarro J.F. Shearthickening behavior of Aerosil® R816 nanoparticles suspensions in polar organic liquids. Rheol. Acta, 2009, vol. 48, pp. 699-708. https://doi.org/10.1007/s00397-009-0367-7">https://doi.org/10.1007/s00397-009-0367-7
Liu A.J., Nagel S.R. The jamming transition and the marginally jammed solid. Annu. Rev. Condens. Matter Phys., 2010, vol. 1, pp. 347-369. https://doi.org/10.1146/annurev-conmatphys-070909-104045">https://doi.org/10.1146/annurev-conmatphys-070909-104045
Seth J.R., Mohan L., Locatelli-Champagne C., Cloitre M., Bonnecaze R.T. A micromechanical model to predict the flow of soft particle glasses. Nature Mater., 2011, vol. 10, pp. 838-843. https://doi.org/10.1038/nmat3119">https://doi.org/10.1038/nmat3119
Galindo-Rosalesa F.J., Rubio-Hernбndez F.J., Sevilla A. An apparent viscosity function for shear thickening fluids. Journal of Non-Newtonian Fluid Mechanics, 2011, vol. 166, pp. 321-325. https://doi.org/10.1016/j.jnnfm.2011.01.001">https://doi.org/10.1016/j.jnnfm.2011.01.001
Boyer F., Guazzell E., Pouliquen O. Unifying suspension and granular rheology. Phys. Rev. Lett., 2011, vol. 107, 188301. https://doi.org/10.1103/PhysRevLett.107.188301">https://doi.org/10.1103/PhysRevLett.107.188301
Nakanishi H., Nagahiro S., Mitarai N. Fluid dynamics of dilatant fluids. Phys. Rev. E, 2012, vol. 85, 011401. https://doi.org/10.1103/PhysRevE.85.011401">https://doi.org/10.1103/PhysRevE.85.011401
Fortier A. Mécanique de suspensions [Suspension mechanics]. Masson et C-ie, 1967.176 p.
Ur’yev N.B. Fiziko-khimicheskiye osnovy tekhnologii dispersnykh system i materialov [Physicochemical foundations of the technology of dispersed systems and materials]. Moscow, Khimiya, 1988. 255p.
Tanner R.I. Engineering rheology. Oxford University Press, 2000. 586 p.
Brown E., Jaeger H.M. Shear thickening in concentrated suspensions: phenomenology, mechanisms and relations to jamming. Rep. Prog. Phys., 2014, vol. 77, 046602. http://iopscience.iop.org/0034-4885/77/4/046602">http://iopscience.iop.org/0034-4885/77/4/046602
Denn M.M., Morris J.F. Rheology of non-Brownian suspensions. Annu. Rev. Chem. Biomol. Eng., 2014, vol. 5,
pp. 203-228. https://doi.org/10.1146/annurev-chembioeng-060713-040221">https://doi.org/10.1146/annurev-chembioeng-060713-040221
Ardakani H.A., Mitsoulis E., Hatzikiriakos S.G. Capillary flow of milk chocolate. Journal of Non-Newtonian Fluid Mechanics, 2014, vol. 210, pp. 56-65. https://doi.org/10.1016/j.jnnfm.2014.06.001">https://doi.org/10.1016/j.jnnfm.2014.06.001
Mari R., Seto R., Morris J.F., Denn M.M. Nonmonotonic flow curves of shear thickening suspensions. Phys. Rev. E, 2015, vol. 91, 052302. https://doi.org/10.1103/PhysRevE.91.052302">https://doi.org/10.1103/PhysRevE.91.052302
Pan Zh., de Cagny H., Weber B., Bonn D. S-shaped flow curves of shear thickening suspensions: Direct observation of frictional rheology. Phys. Rev. E, 2015, vol. 92, 032202. https://doi.org/10.1103/PhysRevE.92.032202">https://doi.org/10.1103/PhysRevE.92.032202
Ness C., Sun J. Shear thickening regimes of dense non-Brownian suspensions. Soft Matter, 2016, vol. 12, pp. 914-924. https://doi.org/10.1039/c5sm02326b">https://doi.org/10.1039/c5sm02326b
Vázquez-Quesada A., Ellero M. Rheology and microstructure of non-colloidal suspensions under shear studied with Smoothed Particle Hydrodynamics. Journal of Non-Newtonian Fluid Mechanics, 2016, vol. 233,
pp. 37-47. https://doi.org/10.1016/j.jnnfm.2015.12.009">https://doi.org/10.1016/j.jnnfm.2015.12.009
Nagahiro S., Nakanishi H. Negative pressure in shear thickening bands of a dilatant fluid. Phys. Rev. E, 2016, vol. 94, 062614. https://doi.org/10.1103/PhysRevE.94.062614">https://doi.org/10.1103/PhysRevE.94.062614
Vázquez-Quesada A., Wagner N.J., Ellero M. Planar channel flow of a discontinuous shear-thickening model fluid: Theory and simulation. Phys. Fluid., 2017, vol. 29, 103104. https://doi.org/10.1063/1.4997053">https://doi.org/10.1063/1.4997053
Singh A., Mari R., Denn M.M., Morris J.F. A constitutive model for simple shear of dense frictional suspensions. J. Rheol., 2018, vol. 62, pp. 457-468. https://doi.org/10.1122/1.4999237">https://doi.org/10.1122/1.4999237
Singh A., Pednekar S., Chun J., Denn M.M., Morris J.F. From yielding to shear jamming in a cohesive frictional suspension. Phys. Rev. Lett., 2019, vol. 122, 098004. https://doi.org/10.1103/PhysRevLett.122.098004">https://doi.org/10.1103/PhysRevLett.122.098004
Egres R.G., Wagner N.J. The rheology and microstructure of acicular precipitated calcium carbonate colloidal suspensions through the shear thickening transition. J. Rheol., 2005, vol. 49, pp. 719-746. https://doi.org/10.1122/1.1895800">https://doi.org/10.1122/1.1895800
Skulskiy O.I., Slavnov Ye.V., Shakirov N.V. The hysteresis phenomenon in nonisothermal channel flow of a non-Newtonian liquid. Journal of Non-Newtonian Fluid Mechanics, 1999, vol. 81, pp. 17-26. https://doi.org/10.1016/S0377-0257(98)00091-3">https://doi.org/10.1016/S0377-0257(98)00091-3
Aristov S.N., Skul'skii O.I. Exact solution of the problem on a six‐constant Jeffrey‘s model of fluid in a plane channel. J. Appl. Mech. Tech. Phys., 2002, vol. 43, pp. 817-822. https://doi.org/10.1023/A:1020752101539">https://doi.org/10.1023/A:1020752101539
Aristov S.N., Skul'skii O.I. Exact solution of the problem of flow of a polymer solution in a plane channel. J. Eng. Phys. Thermophys., 2003, vol. 76, pp. 577-585. https://doi.org/10.1023/A:1024768930375">https://doi.org/10.1023/A:1024768930375
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.