Construction of the bending model of micropolar elastic thin beams with a circular axis and its implementation using finite element method

Authors

  • Samvel Oganesovich Sargsyan Shirak State University
  • Meline Vardanovna Khachatryan Shirak State University

DOI:

https://doi.org/10.7242/1999-6691/2020.13.3.20

Keywords:

micropolar theory of elasticity, beam with a circular axis, plane bending, one-dimensional model, finite element method

Abstract

This paper considers the problem of transition from the system of two-dimensional equations of the micropolar (moment) theory of elasticity in a thin curved area to the one-dimensional system of equations describing deformation of the micropolar elastic thin beam with a circular axis. During the transition process, Timoshenko's hypotheses generalized to the micropolar case are applied. As a result, the applied model (with independent fields of displacements and rotation) of a micropolar elastic thin beam with a circular axis has been constructed. It is shown that the model includes the law of conservation of energy, energy theorems and variation principles. All main functionals for the model of the micropolar elastic thin beam with a circular axis are obtained from the functional of the two-dimensional micropolar theory of elasticity, containing only the first derivatives of displacements and rotations. The finite element method (FEM) is taken to study the boundary problems of statics and dynamics of applied model of the micropolar elastic thin beam with a circular axis. The basic concepts and stages of the FEM are formulated: the discretization, the selection of basic nodal unknowns, the approximation of the solution, and the construction of the basic FEM equations. The finite-element solutions of some problems of statics and problems on natural vibrations of beams with a circular axis are considered according to the micropolar theory of elasticity. A comparative analysis with similar problems of beams with a circular axis according to the classical theory of elasticity is carried out. Based on the results, some effective properties of beams with a circular axis have been established when considering their deformations in the context of the micropolar theory of elasticity.

Downloads

Download data is not yet available.

References

Ponomarev S.D., Biderman V.L., Likharev K.K., Makushin V.M., Malinin N.N., Feodos’yev V.I. Raschety na prochnost’ v mashinostroyenii. T.1. Teoreticheskiye osnovy i eksperimental’nyye metody. Raschety sterzhnevykh elementov konstruktsiy pri staticheskoy nagruzke [Strength calculations in mechanical engineering. Vol. 1. Theoretical foundations and experimental methods. Calculations of bar structural members under static load]. Moscow, Mashgiz, 1956. 884 p.

Birger I.A., Panovko Ya.G. (ed.) Prochnost’. Ustoychivost’. Kolebaniya. Spravochnik [Strength. Stability. Fluctuations. Handbook]. Vol. 1. Moscow, Mashgiz, 1968. 832 p.

Kuz’min M.A., Lebedev D.L., Popov B.G. Raschety na prochnost’ elementov mnogosloynykh kompozitnykh konstruktsiy [Strength calculations for elements of multilayer composite structures]. Moscow, Izd-vo MGTU im. N.E. Baumana, 2012. 341 p.

Sargsyan S.H., Khachatryan M.V. Matematicheskaya model’ ploskogo krivogo (krugovogo) uprugogo sterzhnya po klassicheskoy teorii uprugosti s uchetom poperechnykh sdvigovykh deformatsiy [Mathematical мodel of еlastic plane curve beam (circular) with consideration of shear deformations on the basis of the classical theory of elasticity]. Doklady NAN Armenii – Reports of NAS of RA, 2016, vol. 116, no. 1, pp. 34-42.

Lakes R.S., Drugan W.J. Bending of a Cosserat elastic bar of square cross section: Theory and experiment. J. Appl. Mech., 2015, vol. 82, 091002. https://doi.org/10.1115/1.4030626">https://doi.org/10.1115/1.4030626

Sargsyan S.H., Khachatryan M.V. Matematicheskaya model’ staticheskoy deformatsii mikropolyarnogo uprugogo sterzhnya s krugovoy os’yu po teorii so stesnennym vrashcheniyem i metod konechnykh elementov [Mathematical model of static deformation of micropolar elastic beam with a circular axis on the theory with constrained rotation and the finite element method]. Izv. NAN RA. Mekhanika – Proceedings of NAS of Armenia. Mechanics, 2019, vol. 72, no. 3, pp. 39-55․

Nakamura S., Benedict R.L., Lakes R.S. Finite element method for orthotropic micropolar elasticity. Int. J. Eng. Sci., 1984, vol. 22, pp. 319-330. https://doi.org/10.1016/0020-7225(84)90013-2">https://doi.org/10.1016/0020-7225(84)90013-2

Korepanov V.V., Matveenko V.P., Shardakov I.N. Numerical study of two-dimensional problems of nonsymmetric elasticity. Mech. Solids, 2008, vol. 43, pp. 218-224. https://doi.org/10.3103/S0025654408020064">https://doi.org/10.3103/S0025654408020064

Korepanov V.V., Kulesh M.A., Matveenko V.P., Shardakov I.N. Analytical and numerical solutions in the context of Cosserat continuum as the basis for experiments on detection of couple-stress effects in materials. Vychisl. mekh. splosh. sred – Computational Continuum Mechanics, 2009, vol. 2, no. 4, pp. 76-91. https://doi.org/10.7242/1999-6691/2009.2.4.33">https://doi.org/10.7242/1999-6691/2009.2.4.33

Sargsyan S.H., Zhamakochyan K.A. Proc. of the XLII Summer school-conference “Advanced Problems in Mechanics”. APM-2014, St.-Petersburg, Russia, June 30-July 5, 2014. P. 427-434.

Zhamakochyan K.A., Sargsyan S.H. Finite element method for calculation of bending of micropolar elastic thin plates. Vychisl. mekh. splosh. sred – Computational Continuum Mechanics, 2016, vol. 9, no. 3, pp. 375-383. https://doi.org/10.7242/1999-6691/2016.9.3.31">https://doi.org/10.7242/1999-6691/2016.9.3.31

Sargsyan S.H. Effective manifestations of characteristics of strength and rigidity of micropolar elastic thin bars. Journal of Materials Science and Engineering, 2012, vol. 2, no. 1, pp. 100-110. https://www.airitilibrary.com/Publication/alDetailedMesh?DocID=19348959-201201-201205080001-201205080001-100-110">https://www.airitilibrary.com/Publication/alDetailedMesh?DocID=19348959-201201-201205080001-201205080001-100-110

Sarkisyan S.H. Mathematical model of micropolar elastic thin plates and their strength and stiffness characteristics. J. Appl. Mech. Tech. Phy., 2012, vol. 53, pp. 275-282. https://doi.org/10.1134/S0021894412020162">https://doi.org/10.1134/S0021894412020162

Sargsyan S.H. General theory of micropolar elastic thin shells. Phys. Mesomech., 2012, vol. 15, pp. 69-79. https://doi.org/10.1134/S1029959912010079">https://doi.org/10.1134/S1029959912010079

Nowacki W. Theory of asymmetric elasticity. Pergamon Press, 1986. 383 p.

Published

2020-09-30

Issue

Section

Articles

How to Cite

Sargsyan, S. O., & Khachatryan, M. V. (2020). Construction of the bending model of micropolar elastic thin beams with a circular axis and its implementation using finite element method. Computational Continuum Mechanics, 13(3), 256-268. https://doi.org/10.7242/1999-6691/2020.13.3.20