Oscillatory convection of a colloidal suspension in a horizontal cell

Authors

  • Ivan Nikolayevich Cherepanov Perm State University
  • Boris Leonidovich Smorodin Perm State University

DOI:

https://doi.org/10.7242/1999-6691/2020.13.3.19

Keywords:

convection, colloidal suspension, traveling waves, numerical simulation

Abstract

The finite difference numerical simulations performed are for convection of a non-uniformly heated colloidal suspension (Hyflon MFA) filling a horizontal cell of finite length. The cell has solid and impermeable boundaries and is heated from below. A linear temperature distribution is maintained at the side walls. Due to the negative effect of thermodiffusion (Soret) and gravity sedimentation, a heavy impurity is collected at the hot lower boundary, and convection transfers it inside the cell. The stable and transient oscillatory convection modes observed experimentally are analyzed. If the initial distribution of the concentration is uniform, then stationary convection occurs in the cell. As the concentration inhomogeneities accumulate, oscillatory perturbations begin to increase. A modulated traveling wave may form in the layer. Stable traveling waves are observed when the Rayleigh number exceeds a certain critical value, which depends on the cell length. There is a good agreement between the experimental data [1] and the results of numerical research. The spatial structure of the concentration field and the time evolution of the convective characteristics of the colloid suspension are determined. The behavior of the colloidal suspension in the regimes of modulated traveling waves and transient flows near the threshold of convection, including localized traveling waves and waves that change their direction, is simulated and elucidated. By analyzing the behavior of the world lines of the vortices and the concentration field, the mechanism of formation of defects in the form of vortex coalescence is clarified. In the process of defect formation, two vortices with the opposite direction of rotation are involved.

Downloads

Download data is not yet available.

References

Donzelli G., Cerbino R., Vailati A. Bistable heat transfer in a nanofluid. Phys. Rev. Lett., 2009, vol. 102, 104503. http://dx.doi.org/10.1103/PhysRevLett.102.104503">http://dx.doi.org/10.1103/PhysRevLett.102.104503

Landau L.D., Lifshitz E.M. Fluid mechanics. A course of theoretical physics. Vol. 6. Pergamon Press, 1987. 539 p.

Gershuni G. Z., Zhukhovitskii E. M. Convective stability of incompressible fluids. Jerusalem, Keter Publishing House, 1976. 330 p.

Mason M., Weaver W. The Settling of Small Particles in a Fluid // Physical Review. 1924. Vol. 23. 412-426. https://doi.org/10.1103/PhysRev.23.412

Raikher Yu.L., Shliomis M.I. On the kinetics of establishment of the equilibrium concentration in a magnetic suspension. J. Magn. Magn. Mater., 1993, vol. 122, pp. 93-97. https://doi.org/10.1016/0304-8853(93)91047-B">https://doi.org/10.1016/0304-8853(93)91047-B

Shliomis M.I., Smorodin B.L. Convective instability of magnetized ferrofluids. J. Magn. Magn. Mater., 2002, vol. 252, pp. 197-202. https://doi.org/10.1016/S0304-8853(02)00712-6">https://doi.org/10.1016/S0304-8853(02)00712-6

Lücke M., Barten W., Büchel P., Fütterer C., Hollinger St., Jung Ch. Pattern formation in binary fluid convection and in systems with through flow. Evolution of spontaneous structures in dissipative continuous systems. Springer, 1998. P. 127-196. https://doi.org/10.1007/3-540-49537-1_3">https://doi.org/10.1007/3-540-49537-1_3

Putin G.F. Materials of the 11th Riga meeting on magnetohydrodynamics. Riga, Zinatne, 1984. Vol. 3, pp. 15-18.

Glukhov A.F., Demin V.A. Teplovaya konvektsiya binarnykh smesey v vertikal’nykh sloyakh i kanalakh pri podogreve snizu  [Thermal convection of binary mixtures in vertical layers and channels when heated from below]. Vestnik PGU. Fizika – Bulletin of Perm State University. Physics, 2009, no. 27(1), pp. 16-26.

Winkel F., Messlinger S., Schöpf W., Rehberg I., Siebenbürger M., Ballauff M. Thermal convection in a thermosensitive colloidal suspension. New J. Phys., 2010, vol. 12, 053003. https://dx.doi.org/10.1088/1367-2630/12/5/053003">https://dx.doi.org/10.1088/1367-2630/12/5/053003

Smorodin B.L., Cherepanov I.N., Myznikova B.I., Shliomis M.I. Traveling-wave convection in colloids stratified by gravity. Phys. Rev. E, 2011, vol. 84, 026305. https://dx.doi.org/10.1103/PhysRevE.84.026305">https://dx.doi.org/10.1103/PhysRevE.84.026305

Smorodin B.L., Cherepanov I.N. Convection of colloidal suspensions stratified by thermodiffusion and gravity. Eur. Phys. J. E, 2014, vol. 37, 118. https://dx.doi.org/10.1140/epje/i2014-14118-x">https://dx.doi.org/10.1140/epje/i2014-14118-x

Smorodin B.L., Cherepanov I.N. Convection in a colloidal suspension in a closed horizontal cell. J. Exp. Theor. Phys., 2015, vol. 120, pp. 319-326. https://doi.org/10.1134/S1063776115010161">https://doi.org/10.1134/S1063776115010161

Cherepanov I.N. Colloid flow in a horizontal cell subjected to heating from sidewall. Vychisl. mekh. splosh. sred – Computational Continuum Mechanics, 2016, vol. 9, no. 2, pp. 135-144. https://dx.doi.org/10.7242/1999-6691/2016.9.2.12">https://dx.doi.org/10.7242/1999-6691/2016.9.2.12

Lyubimova T.P., Zubova N.A. Onset and nonlinear regimes of convection of ternary mixture in a rectangular porous cavity taking into account Soret effect. Vychisl. mekh. splosh. sred – Computational Continuum Mechanics, 2019, vol. 12, no. 3, pp. 249-262. https://dx.doi.org/10.7242/1999-6691/2019.12.3.21">https://dx.doi.org/10.7242/1999-6691/2019.12.3.21

Roache P.J. Computational fluid dynamics. Hermosa Publishers, 1976. 446 p.

Marchuk G.I. Methods of numerical mathematics. Springer, 1982. 510 p.

Published

2020-09-30

Issue

Section

Articles

How to Cite

Cherepanov, I. N., & Smorodin, B. L. (2020). Oscillatory convection of a colloidal suspension in a horizontal cell. Computational Continuum Mechanics, 13(3), 247-255. https://doi.org/10.7242/1999-6691/2020.13.3.19