Two-level elastic-viscoplastic model: application to the analysis of the crystal anisotropy influence

Authors

  • Aleksandr Sergeyevich Sokolov Perm National Research Polytechnic University
  • Petr Valentinovich Trusov Perm National Research Polytechnic University

DOI:

https://doi.org/10.7242/1999-6691/2020.13.2.17

Keywords:

two-level elastoviscoplastic model, elastic anisotropy effect, equivalent isotropic material, Voigt-Reuss-Hill averaging procedures, residual mesostresses

Abstract

Multilevel crystal plasticity models have been widely used to study the processes of inelastic deformation of polycrystalline materials over the last 15-20 years. Anisotropy of plastic strains in crystallites is usually taken into account at the mesoscale, while their elastic properties are often assumed to be isotropic. The objective of this work is to assess the differences in the stress-strain characteristics (especially, residual mesoscopic stresses) by taking into account the anisotropy of elastic properties of materials calculated for the isothermal deformation of polycrystals with various types of crystallitelattice symmetry within a representative macrovolume. For this purpose, the results obtained by the authors were compared with the data received for the material with isotropic elastic properties and obtained using the Voigt-Reuss-Hill averaging procedures. The results of the analysis for the stress-strain state of polycrystalline samples with FCC, BCC, and HCP lattices obtained in a simple sheartest(up to the accumulated strain of 50%) are presented. The statistical two-level model developed on the basis of the geometrically nonlinear elasto-viscoplasticity theoryis used to perform calculations. In such constitutive models, the main fundamental relation is the elastic law written in the rate relaxation form in terms of the measures of the stress rates and strain rates, being independent of the choice of a reference frame (or superimposed rigid motion). It is shown that the analysis of the anisotropy effect has a noticeable impacton the characteristic macrovolume stress-strain state only at the initial stage of deformation. Subsequently, for deformations exceeding 1-1.5%, the difference becomes insignificant. At the same time, the results of calculations of the residual mesoscopic stresses (i.e., the stresses after unloading a representative macrovolume), which have a significant effect on the strength characteristics of materials, taking into account the crystallite anisotropy, turned out to be significantly different from those obtained under the isotropy hypothesis.

Downloads

Download data is not yet available.
Supporting Agencies
Работа выполнена при финансовой поддержке Минобрнауки РФ (базовая часть государственного задания ПНИПУ, проект № FSNM-020-0027) и РФФИ (проект № 20-31-70027).

References

Panin V.E. (ed.) Fizicheskaya mezomekhanika i komp’yuternoye konstruirovaniye materialov [Physical mesomechanics and computer-aided design of materials]. Novosibirsk, Nauka, 1995. Vol. 1, 298 p. Vol. 2, 320 p.

Panin V.E.  Physical  foundations  of  mesomechanics of a medium with a structure. Russ. Phys. J., 1992, vol. 35,  pp. 305-315. https://doi.org/10.1007/BF00560066">https://doi.org/10.1007/BF00560066

Trusov P.V., Shveykin A.I. Mnogourovnevyye modeli mono- i polikristallicheskikh materialov: teoriya, algoritmy, primery primeneniya [Multilevel models of mono- and polycrystalline materials: theory, algorithms, application examples]. Novosibirsk, Silberian Branch of RAS, 2019. 605 p. http://dx.doi.org/10.15372/MULTILEVEL2019TPV">http://dx.doi.org/10.15372/MULTILEVEL2019TPV

McDowell D.L. A perspective on trends in multiscale plasticity. Int. J. Plast., 2010, vol. 26, pp. 1280-1309. https://doi.org/10.1016/j.ijplas.2010.02.008">https://doi.org/10.1016/j.ijplas.2010.02.008

Horstemeyer M.F. Multiscale modeling: A review. Practical Aspects of Computational Chemistry, ed. J. Leszczynski, M.K. Shukla. Springer, 2009. P. 87-135. https://doi.org/10.1007/978-90-481-2687-3_4">https://doi.org/10.1007/978-90-481-2687-3_4

Roters F., Eisenlohr P., Hantcherli L., Tjahjanto D.D., Bieler T.R., Raabe D. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications. Acta Mater., 2010, vol. 58, pp. 1152-1211. https://doi.org/10.1016/j.actamat.2009.10.058">https://doi.org/10.1016/j.actamat.2009.10.058

Trusov P.V., Shveykin A.I. Teoriya plastichnosti [Plasticity theory]. Perm, Perm. gos. tekhn. un-t, 2011. 419 p.

Trusov P.V., Shveykin A.I. Multilevel crystal plasticity models of single- and polycrystals. Statistical models. Phys. Mesomech., 2013, vol. 16, pp. 23-33. https://doi.org/10.1134/S1029959913010037">https://doi.org/10.1134/S1029959913010037

Trusov P.V., Shveykin A.I. Multilevel crystal plasticity models of single- and polycrystals. Direct models. Phys. Mesomech., 2013, vol. 16, pp. 99-124. https://doi.org/10.1134/S1029959913020021">https://doi.org/10.1134/S1029959913020021

Kroner E. Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen [Continuum theory of dislocations and residual stresses]. Arch. Rational Mech. Anal., 1959, vol.  4, pp. 273-334. https://doi.org/10.1007/BF00281393">https://doi.org/10.1007/BF00281393

Lee E.H., Liu D.T. Finite-strain elastic-plastic theory with application to plane-wave analysis. J. Appl. Phys., 1967, vol. 38, pp. 19-27. https://doi.org/10.1063/1.1708953">https://doi.org/10.1063/1.1708953

Lee E.H. Elastic-plastic deformation at finite strain. J. Appl. Mech., 1969, vol. 36, pp. 1-6. https://doi.org/10.1115/1.3564580">https://doi.org/10.1115/1.3564580

Green A.E., Adkins J.E. Large elastic deformations and non-linear continuum mechanics. Oxford, The Clarendon Press, 1960. 348 p.

Trusov P.V., Kondratev N.S., Shveykin A.I. About geometricaly nonlinear constitutive relations for elastic material. Vestnik PNIPU. Mekhanika – PNRPU Mechanics Bulletin, 2015, no. 3, pp. 182-200. https://doi.org/10.15593/perm.mech/2015.3.13">https://doi.org/10.15593/perm.mech/2015.3.13

Taylor G.I. Plastic strain in metals. J. Inst. Metals, 1938, vol. 62, pp. 307-324.

Lin T.H. Analysis of elastic and plastic strains of a face-centered cubic crystal. J. Mech. Phys. Solid., 1957, vol. 5, pp. 143‑149. https://doi.org/10.1016/0022-5096(57)90058-3">https://doi.org/10.1016/0022-5096(57)90058-3

Truesdell C.A. Hypo-elasticity. J. Rational Mech. Anal., 1955, vol. 4, pp. 83-133.

Truesdell C. The simplest rate theory of pure elasticity. Comm. Pure Appl. Math., 1955, vol. 8, pp. 123-132. https://doi.org/10.1002/cpa.3160080109">https://doi.org/10.1002/cpa.3160080109

Truesdell C. Hypo-elastic shear. J. Appl. Phys., 1956, vol. 27, pp. 441-447. https://doi.org/10.1063/1.1722399">https://doi.org/10.1063/1.1722399

Xiao H., Bruhns O.T., Meyers A. Hypo-elasticity model based upon the logarithmic stress rate. J. Elasticity, 1997, vol. 47, pp. 51-68. https://doi.org/10.1023/A:1007356925912">https://doi.org/10.1023/A:1007356925912

Xiao H., Bruhns O.T., Meyers A. Objective corotational rates and unified work-conjugacy relation between Eulerian and Lagrangean strain and stress measures. Arch. Mech., 1988, vol. 50, no. 6, pp. 1015-1045. https://am.ippt.pan.pl/index.php/am/article/view/v50p1015/631">https://am.ippt.pan.pl/index.php/am/article/view/v50p1015/631

Xiao H., Bruhns O.T., Meyers A. The choice of objective rates in finite elastoplasticity: general results on the uniqueness of the logarithmic rate. Proc. R. Soc. Lond. A, 2000, vol. 456, pp. 1865-1882. https://doi.org/10.1098/rspa.2000.0591">https://doi.org/10.1098/rspa.2000.0591

Xiao H., Bruhns O.T., Meyers A. Objective stress rates, path-dependence properties and non-integrability problems. Acta Mechanica, 2005, vol. 176, pp. 135-151. https://doi.org/10.1007/s00707-005-0218-2">https://doi.org/10.1007/s00707-005-0218-2

Hill R. Constitutive inequalitites for isotropic elastic solids under finite strain. Proc. R. Soc. Lond. A, 1970, vol. 314, pp. 457-472. https://doi.org/10.1098/rspa.1970.0018">https://doi.org/10.1098/rspa.1970.0018

Seth B.R. Generalized strain and transition concepts for elastic-plastic deformation-creep and relaxation. Applied Mechanics, ed. H. Görtler. Springer, 1966. P. 383-389. https://doi.org/10.1007/978-3-662-29364-5_51">https://doi.org/10.1007/978-3-662-29364-5_51

Lurie A.I. Nonlinear theory of elasticity. Elsevier, 1990. 617 p.

Lehmann T. Anisotrope plastische Formänderungen. Rheol. Acta, 1964, vol. 3, pp. 281-285. https://doi.org/10.1007/BF02096162">https://doi.org/10.1007/BF02096162

Dienes J.K. On the analysis of rotation and stress rate in deforming bodies. Acta Mechanica, 1979, vol. 32, pp. 217-232. https://doi.org/10.1007/BF01379008">https://doi.org/10.1007/BF01379008

Pozdeyev A.A., Trusov P.V., Nyashin Yu.I. Bol’shiye uprugoplasticheskiye deformatsii: teoriya, algoritmy, prilozheniya [Lagre elastic-plastic deformations: theory, algorithms, applications]. Moscow, Nauka, 1986. 232 p.

Trusov P.V., Shveykin A.I., Yanz A.Yu. Motion decomposition, frame-indifferent derivatives, and constitutive relations at large displacement gradients from the viewpoint of multilevel modeling. Phys. Mesomech., 2017, vol. 20, pp. 357-376. https://doi.org/10.1134/S1029959917040014">https://doi.org/10.1134/S1029959917040014

Trusov P.V., Shveykin A.I. On motion decomposition and constitutive relations in geometrically nonlinear elastoviscoplasticity of crystallites. Phys. Mesomech., 2016, vol. 19, pp. 377-391. https://doi.org/10.1134/S1029959917040026">https://doi.org/10.1134/S1029959917040026

Krivosheina M.N., Tuch E.V., Khon Yu.A. Applying the Mises-Hill criterion to modeling the dynamic loading of highly anisotropic materials. Bull. Russ. Acad. Sci. Phys., 2012, vol. 76, pp. 80-84. https://doi.org/10.3103/S1062873812010169">https://doi.org/10.3103/S1062873812010169

Newnham R.E. Properties of materials. Anisotropy, symmetry, structure. Oxford University Press, 2005. 390 p.

Shermergor T.D. Teoriya uprugosti mikroneodnorodnykh tel [The theory of elasticity of micro-inhomogeneous bodies]. Moscow, Nauka, 1977. 399 p.

Birger I.A. Ostatochnyye napryazheniya [Residual stresses]. Moscow, Mashgiz, 1963. 232 p.

Fridman Ya.B. Mekhanicheskiye svoystva metallov. Ch. 1. Deformatsiya i razrusheniye [Mechanical properties of metals. Part 1. Deformation and Destruction]. Moscow, Mashinostroyeniye, 1974. 472 p.

Pozdeyev A.A., Nyashin Yu.I., Trusov P.V. Ostatochnyye napryazheniya: teoriya i prilozheniya Residual stresses: theory and applications]. Moscow, Nauka, 1974. 112 p.

Radchenko V.P., Saushkin M.N. Polzuchest’ i relaksatsiya ostatochnykh napryazheniy v uprochnennykh konstruktsiyakh [Creep and relaxation of residual stresses in reinforced structures]. Moscow, Mashinostroyeniye, 2005. 226 p.

Kachanov L.M. Osnovy mekhaniki razrusheniya [Fundamentals of fracture mechanics]. Moscow, Nauka, 1974. 312 p.

Collins J.A. Failure of materials in mechanical design: Analisys, prediction, prevention. John Wiley & Sons, 1981. 629 p.

Rabotnov Yu.N. Vvedeniye v mekhaniku razrusheniya [Introduction to fracture mechanics]. Moscow, Nauka, 1987. 80 p.

Besson J. Continuum models of ductile fracture: A Review. Int. J. Damage Mechanics, 2010, vol. 19, pp. 3-52. https://doi.org/10.1177%2F1056789509103482">https://doi.org/10.1177%2F1056789509103482

Volegov P.S., Gribov D.S., Trusov P.V. Damage and fracture: Review of experimental studies. Phys. Mesomech., 2016, vol. 19, pp. 319-331. https://doi.org/10.1134/S1029959916030103">https://doi.org/10.1134/S1029959916030103

Published

2020-06-30

Issue

Section

Articles

How to Cite

Sokolov, A. S., & Trusov, P. V. (2020). Two-level elastic-viscoplastic model: application to the analysis of the crystal anisotropy influence. Computational Continuum Mechanics, 13(2), 219-230. https://doi.org/10.7242/1999-6691/2020.13.2.17