Numerical analysis of the influence of side wall shape on the efficiency of thermal energy storages based on granular phase change materials

Authors

  • Sergey Sergeyevich Fetsov Institute of Automation and Control Processes FEB RAS; Far Eastern Federal University
  • Nikolay Anatol’yevich Lutsenko Institute of Automation and Control Processes FEB RAS; Far Eastern Federal University

DOI:

https://doi.org/10.7242/1999-6691/2020.13.2.15

Keywords:

thermal energy storage, phase transition, porous media, numerical modeling

Abstract

This work is devoted to a numerical study of processes in thermal energy storages based on granular phase change materials. The influence of the side walls shape on the efficiency of such heat accumulators is studied when the plane-parallel flows of gas heat transfer fluid take place. The shape of the energy storage affects the heat transfer fluid flow in the object, and this affects the heat transfer, heat accumulation and heat recovery. Using the novel numerical model, the influence of narrowing and expansion of the side walls on the charging and discharging processes of thermal energy storages with rectangular cross sections are studied under two types of boundary conditions: the known mass flow rate of gas at the object inlet and the known gas pressure drop at its open borders for different phase change temperatures of the phase change material .Different efficiency criteria are used to estimate the preferred shape of a heat storage. For the charging process, the preference criteria considered are the maximum instantaneous storage efficiency, the maximum cumulative storage efficiency, and the minimum time to fully charge the device. For the discharge process, the considered preference criteria are the maximum energy recovery efficiency, the maximum total utilization ratio, and the maximum time to maintain the temperature of the heat transfer fluid at the outlet not lower than the desired value. It is shown that the preferred shape of the energy storage depends on the choice of the efficiency criterion and specific process conditions such as boundary conditions, phase transition temperature, etc. Narrowing and expanding thermal energy storages have an advantage in rare cases, and storages with straight walls are often most preferable.

Downloads

Download data is not yet available.
Supporting Agencies
Исследование выполнено в рамках государственного задания Министерства науки и высшего образования Российской Федерации (Госрегистрация № ААА-А20-120021290007-8).

References

Popel’ O.S., Fortov V.E. Vozobnovlyayemaya energetika v sovremennom mire [Renewable energy in the modern world]. Moscow, Izdatel’skiy dom MEI, 2015. 450 p.

Venkataramani G., Parankusam P., Ramalingam V., Wang J. A review on compressed air energy storage – A pathway for smart grid and polygeneration. Renew. Sustain. Energ. Rev., 2016, vol. 62, pp. 895-907. https://doi.org/10.1016/j.rser.2016.05.002">https://doi.org/10.1016/j.rser.2016.05.002

Zalba B., Marin J.M., Cabeza L.F., Mehling H. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. ApplThermEng., 2003, vol. 23, pp. 251-283. https://doi.org/10.1016/S1359-4311(02)00192-8">https://doi.org/10.1016/S1359-4311(02)00192-8

Nazir H., Batool M., Bolivar Osorio F.J., Isaza-Ruiz M., Xu X., Vignarooban K., Phelan P., Inamuddin, Kannanai A.M. Recent developments in phase change materials for energy storage applications: A review. Int. J. Heat Mass Tran., 2019, vol. 129, pp. 491-523. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.126">https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.126

Peng H., Dong H., Ling X. Thermal investigation of PCM-based high temperature thermal energy storage in packed bed. Energ. Convers. Manag., 2014, vol. 81, pp. 420-427. https://doi.org/10.1016/J.ENCONMAN.2014.02.052">https://doi.org/10.1016/J.ENCONMAN.2014.02.052

Kousksou T., Strub F., Castaing Lasvignottes J., Jamil A., Bedecarrats J.P. Second law analysis of latent thermal storage for solar system. Sol. Energ. Mater. Sol. Cells, 2007, vol. 91, pp. 1275-1281. https://doi.org/10.1016/j.solmat.2007.04.029">https://doi.org/10.1016/j.solmat.2007.04.029

Jacob R., Belusko M., Liu M., Saman W., Bruno F. Using renewables coupled with thermal energy storage to reduce natural gas consumption in higher temperature commercial/industrial applications. Renew. Energ., 2019, vol. 131, pp. 1035-1046. https://doi.org/10.1016/j.renene.2018.07.085">https://doi.org/10.1016/j.renene.2018.07.085

Ol’khovskiy G.G., Kazaryan V.A., Stolyarevskiy A. Ya. Vozdushno-akkumuliruyushchiye gazoturbinnyye elektrostantsii (VAGT·E) [Air-storage gas turbine power plants (VAGTE)]. Moscow, Izhevsk, In-t komp’yuternykh issled., 2011. 358 p.

Castellani B., Presciutti A., Filipponi M., Nicolini A., Rossi F. Experimental investigation on the effect of phase change materials on compressed air expansion in CAES plants. Sustainability, 2015, vol. 7, pp. 9773-9786. https://doi.org/10.3390/SU7089773">https://doi.org/10.3390/SU7089773

Peng H., Shan X., Yang Y., Ling X. A study on performance of a liquid air energy storage system with packed bed units. Appl. Energy, 2018, vol. 211, pp. 126-135. https://doi.org/10.1016/J.APENERGY.2017.11.045">https://doi.org/10.1016/J.APENERGY.2017.11.045

Zhu Y., Xiao J., Chen T., Chen A., Zhou S., Liu Z., Xia Z. Experimental and numerical investigation on composite phase change material (PCM) based heat exchanger for breathing air cooling. Appl. Therm. Eng., 2019, vol. 155, pp. 631-636. https://doi.org/10.1016/j.applthermaleng.2019.04.014">https://doi.org/10.1016/j.applthermaleng.2019.04.014

Qiao Y., Cao T., Muehlbauer J., Hwang Y., Radermacher R. Experimental study of a personal cooling system integrated with phase change material. Appl. Therm. Eng., 2020, vol. 170, 115026. https://doi.org/10.1016/j.applthermaleng.2020.115026">https://doi.org/10.1016/j.applthermaleng.2020.115026

Voller V., Cross M. Accurate solutions of moving boundary problems using the enthalpy method. Int. J. Heat Mass Tran., 1981, vol. 24, pp. 545-556. https://doi.org/10.1016/0017-9310%2881%2990062-4">https://doi.org/10.1016/0017-9310%2881%2990062-4

Hills R.N., Loper D.E., Roberts P.H. A thermodynamically consistent model of a mushy zone. Q. J. Mech. Appl. Math., 1983, vol. 36, pp. 505-539. https://doi.org/10.1093/qjmam%2F36.4.505">https://doi.org/10.1093/qjmam%2F36.4.505

Aleksandrov D.V. Theory of solidification with a quasi-equilibrium two-phase zone. Dokl. Phys., 2000, vol. 45, pp. 569-573. https://doi.org/10.1134/1.1333856">https://doi.org/10.1134/1.1333856

Ismail K.A.R., Stuginsky Jr. R. A parametric study on possible fixed bed models for pcm and sensible heat storage. Appl. Therm. Eng., 1999, vol. 19, pp. 757-788. https://doi.org/10.1016/S1359-4311%2898%2900081-7">https://doi.org/10.1016/S1359-4311%2898%2900081-7

Nagano K., Takeda S., Mochida T., Shimakura K. Thermal characteristics of a direct heat exchange system between granules with phase change material and air. Appl. Therm. Eng., 2004, vol. 24, pp. 2131-2144. https://doi.org/10.1016/j.applthermaleng.2004.02.004">https://doi.org/10.1016/j.applthermaleng.2004.02.004

Arkar C., Medved S. Influence of accuracy of thermal property data of a phase change material on the result of a numerical model of a packed bed latent heat storage with spheres. Thermochim. Acta, 2005, vol. 438, pp. 192-201. https://doi.org/10.1016/j.tca.2005.08.032">https://doi.org/10.1016/j.tca.2005.08.032

Rady M. Granular phase change materials for thermal energy storage: Experiments and numerical simulations. ApplThermEng., 2009, vol. 29, pp. 3149-3159. https://doi.org/10.1016/j.applthermaleng.2009.04.018">https://doi.org/10.1016/j.applthermaleng.2009.04.018

Rady M. Thermal performance of packed bed thermal energy storage units using multiple granular phase change composites. Appl. Energy, 2009, vol. 86, pp. 2704-2720. https://doi.org/10.1016/j.apenergy.2009.04.027">https://doi.org/10.1016/j.apenergy.2009.04.027

Izquierdo-Barrientos M.A., Sobrino C., Almendros-Ibanez J.A. Thermal energy storage in a fluidized bed of PCM. Chem. Eng. J., 2013, vol. 230, pp. 573-583. https://doi.org/10.1016/J.CEJ.2013.06.112">https://doi.org/10.1016/J.CEJ.2013.06.112

Izquierdo-Barrientos M.A., Sobrino C., Almendros-Ibanez J.A. Modeling and experiments of energy storage in a packed bed with PCM. Int. J. Multiphas. Flow, 2016, vol. 86, pp. 1-9. https://doi.org/10.1016/j.ijmultiphaseflow.2016.02.004">https://doi.org/10.1016/j.ijmultiphaseflow.2016.02.004

Peng H., Li R., Ling X., Dong H. Modeling on heat storage performance of compressed air in a packed bed system. Appl. Energy, 2015, vol. 160, pp. 1-9. https://doi.org/10.1016/j.apenergy.2015.09.029">https://doi.org/10.1016/j.apenergy.2015.09.029

Li M.-J., Jin B., Yan J.-J., Ma Z., Li M.-J. Numerical and Experimental study on the performance of a new two-layered high-temperature packed-bed thermal energy storage system with changed-diameter macro-encapsulation capsule. Appl. Therm. Eng., 2018, vol. 142, pp. 830-845. https://doi.org/10.1016/j.applthermaleng.2018.07.026">https://doi.org/10.1016/j.applthermaleng.2018.07.026

Elfeky K.E., Ahmed N., Wang Q. Numerical comparison between single PCM and multi-stage PCM based high temperature thermal energy storage for CSP tower plants. Appl. Therm. Eng., 2018, vol. 139, pp. 609-622. https://doi.org/10.1016/j.applthermaleng.2018.04.122">https://doi.org/10.1016/j.applthermaleng.2018.04.122

Mohammadnejad F., Hossainpour S. A CFD modeling and investigation of a packed bed of high temperature phase change materials (PCMs) with different layer configurations. J. Energy Storage, 2020, vol. 28, 101209. https://doi.org/10.1016/j.est.2020.101209">https://doi.org/10.1016/j.est.2020.101209

Mao Q., Zhang Y. Thermal energy storage performance of a three-PCM cascade tank in a high-temperature packed bed system. Renew. Energ., 2020, vol. 152, pp. 110-119. https://doi.org/10.1016/j.renene.2020.01.051">https://doi.org/10.1016/j.renene.2020.01.051

Afshan M.E., Selvakumar A.S., Velraj R., Rajaraman R. Effect of aspect ratio and dispersed PCM balls on the charging performance of a latent heat thermal storage unit for solar thermal applications. Renew. Energ., 2020, vol. 148, pp. 876-888. https://doi.org/10.1016/j.renene.2019.10.172">https://doi.org/10.1016/j.renene.2019.10.172

Teplitskii Yu.S., Roslik A.R. On nonstationary processes of heat transfer in a bed of finely dispersed capsules in the presence of phase transition. JEngPhysThermophy., 2015, vol. 88, pp. 1341-1350. https://doi.org/10.1007/s10891-015-1318-z">https://doi.org/10.1007/s10891-015-1318-z

Levin V.A., Lutsenko N.A., Fetsov S.S. Modeling of gas flow through a granular bed of a thermal storage phase-change material. DoklPhys., 2018, vol. 63, pp. 158-160. https://doi.org/10.1134/S102833581804002X">https://doi.org/10.1134/S102833581804002X

Lutsenko N.A., Fetsov S.S. Numerical model of time-dependent gas flows through bed of granular phase change material. Int. J. Comput. Methods, 2020, vol. 17, 1950010. https://doi.org/10.1142/S0219876219500105">https://doi.org/10.1142/S0219876219500105

Lutsenko N.A., Fetsov S.S. Influence of gas compressibility on gas flow through bed of granular phase change material. Int. J. Heat Mass Tran., 2019, vol. 130, pp. 693-699. https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.100">https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.100

Levin V.A., Lutsenko N.A.Gas flow through a porous heat-releasing medium with allowance for the temperature dependence of gas viscosity. JEngPhysThermophys., 2006, vol. 79, pp. 33-39. https://doi.org/10.1007/s10891-006-0063-8">https://doi.org/10.1007/s10891-006-0063-8

Levin V.A., Lutsenko N.A. Modeling unsteady two-dimensional gas flows in self-heating solid waste dumps. FluidDyn., 2011, vol. 46, pp. 826-834. https://doi.org/10.1134/S0015462811050152">https://doi.org/10.1134/S0015462811050152

Lutsenko N.A. Numerical modeling of three-dimensional gas flows through porous objects with energy-release sources. Vychislmekhsploshsred – Computational Continuum Mechanics, 2016, vol. 9, no. 3, pp. 331-344. https://doi.org/10.7242/1999-6691/2016.9.3.27">https://doi.org/10.7242/1999-6691/2016.9.3.27

Lutsenko N.A. Modeling of heterogeneous combustion in porous media under free convection. Proc. Combust. Inst., 2013, vol. 34, pp. 2289-2294. https://doi.org/10.1016/J.PROCI.2012.06.147">https://doi.org/10.1016/J.PROCI.2012.06.147

Lutsenko N.A. Numerical model of two-dimensional heterogeneous combustion in porous media under natural convection or forced filtration. Combust. Theor. Model., 2018, vol. 22, pp. 359-377. https://doi.org/10.1080/13647830.2017.1406617">https://doi.org/10.1080/13647830.2017.1406617

Glazov S.V., Kislov V.M., Salgansky E.A., Rabinovich O.S., Malinouski A.I., Salganskaya M.V., Pilipenko E.N., Kolesnikova Yu.Yu. Effect of local rearrangements in the particle bed on the stability of filtration combustion of solid fuel. Int. J. Heat Mass Tran., 2017, vol. 108, pp. 1602-1609. https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.097">https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.097

Podlesniy D.N., Zaichenko A.Yu., Salgansky E.A., Salganskaya M.V. Regularities of filtration combustion of bidisperse fuel mixtures in an inclined rotary reactor. Int. J. Heat Mass Tran., 2018, vol. 127, pp. 183-187. https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.020">https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.020

https://www.rubitherm.eu/en/">https://www.rubitherm.eu/en/ (accessed 25 July 2020)

Nigmatulin R.I. Osnovy mekhaniki geterogennykh sred [Fundamentals of mechanics of heterogeneous media]. Moscow, Nauka, 1978. 336 p.

Godunov C.K., Ryaben’kiy V.S. Raznosnyye skhemy (vvedeniye v teoriyu) [Miscellaneous schemes (introduction to theory)]. Moscow, Nauka, 1977. 440 p.

Published

2020-06-30

Issue

Section

Articles

How to Cite

Fetsov, S. S., & Lutsenko, N. A. (2020). Numerical analysis of the influence of side wall shape on the efficiency of thermal energy storages based on granular phase change materials. Computational Continuum Mechanics, 13(2), 189-204. https://doi.org/10.7242/1999-6691/2020.13.2.15