On the conditions for the wind removal of soil particles

Authors

  • Elena Aleksandrovna Malinovskaya A.M. Obukhov Institute of Atmospheric Physics RAS
  • Otto Guramovich Chkhetiani A.M. Obukhov Institute of Atmospheric Physics RAS

DOI:

https://doi.org/10.7242/1999-6691/2020.13.2.14

Keywords:

wind removal of particles, OpenFOAM, surface layer, aerodynamic drag, buoyancy

Abstract

The airflow around spherical sand particles that have diameter of 200 μm and are deposited on the plane at regular distances close to or smaller than their diameter, equaled 50-250, 300 and 700 μm, is studied by considering the problem of wind removal of soil particles. The problem is solved using an open package OpenFOAM. A multilevel mesh is applied with adaptation to the shape of micro relief elements and smoothing the contact area of spherical particles with the lower plane with cylindrical shapes of small radius. The k-type of irregularities with large distances (above 300 microns) is used in calculations of the wind removal of particles. The proximity of the surface resistance values for the gaps between particles from 50 to 300-700 μm indicates the importance of taking into account the air motions in the pores inside a densely packed undersurface layer. The average distances between the particles were estimated by analyzing the sand porosity data. It is shown that they correspond to the case of d-type surface irregularities, when the processes in the layer between particles are significant. The distances of 100-250 μm are characterized by the presence of a recirculation zone in the region between the particles, which determines an order of magnitude greater surface resistance. The dynamic velocity is maximum for 200 μm and minimum for 100 μm; as the distance between particles changes, it also changes near the critical value at which a particle of this size can escape from the surface according to experimental data. Estimates of the height of the viscous surface layer for different distances between particles showed good agreement with the empirical data for relating this value to the roughness parameter. The buoyant force acting on the surface particles and calculated on the basis of estimates of the pressure difference on the opposite sides of the particles is maximum for the distances between the particle surfaces of 200 μm, minimum for 50 and 100 μm, and gives an inverse pressure against the surface for 150 and 250 μm

Downloads

Download data is not yet available.
Supporting Agencies
Исследование выполнено при поддержке Российского научного фонда (грант 20-17-00214).

References

Chou Y.J., Fringer O.B. A model for the simulation of coupled flow bed form evolution in turbulent flows. J. Geophys. Res., 2010, vol. 115, C10041. https://doi.org/10.1029/2010JC006103">https://doi.org/10.1029/2010JC006103

Greeley R., Iversen D.J. Wind as geological process of Earth, Mars, Venus and Titan. New York, Cambridge University press, 1985. 333 p.

Gendugov V.M., Glazunov G.P. Vetrovaya eroziya pochvy i zapylenie vozduha [Wind erosion of the soil and dusting of the air]. Moscow, Fizmatlit, 2007. 238 p.

Baas J.H., Best J.L., Peakall J. Depositional processes, bedform development and hybrid bed formation in rapidly decelerated cohesive (mud–sand) sediment flows. Sedimentology, 2011, vol. 58, pp. 1953-1987. https://doi.org/10.1111/j.1365-3091.2011.01247.x">https://doi.org/10.1111/j.1365-3091.2011.01247.x

Shao Y. Physics and modeling of wind erosion. Springer, 2008. 452 p.

Lu H. An integrated wind erosion modeling system with emphasis on dust emission and transport. PhDoctor Dissertarion in Mathematical Science, Sydney: School of Mathematics The University of New South Wales, 1999. 185 p.

Pye K., Tsoar H. Aeolian sand and sand dunes. Springer, 2009. 458 p. https://doi.org/10.1007/978-3-540-85910-9">https://doi.org/10.1007/978-3-540-85910-9

Nikuradse J. Laws of flow in rough pipes. Washington: NACA, 1950. 61 p.

Gorchakov G.I., Karpov A.V., Kopeikin V.M., Zlobin I.A., Buntov D.V., Sokolov A.V. Study of the dynamics of saltating sand grains over desertified territories. Dokl. Earth Sc., 2013, vol. 452, pp. 1067-1073. https://doi.org/10.1134/S1028334X1309002X">https://doi.org/10.1134/S1028334X1309002X

Bagnold R.A. The physics of blown sand and desert dunes. Springer, 1973. 265 p. https://doi.org/10.1007/978-94-009-5682-7">https://doi.org/10.1007/978-94-009-5682-7

Byutner E.K. Dinamika pripoverkhnostnogo sloya vozdukha [The dynamics of the surface air layer]. Leningrad, Gidrometizdat, 1978. 156 p.

Semenov O.E. Vvedeniye v eksperimental’nuyu meteorologiyu i klimatologiyu peschanykh bur’ [Introduction to experimental meteorology and climatology of sandstorms]. Almaty, 2011. 580 p.

Anderson R.S., Hallet B. Sediment transport by wind: toward a general model. GSA Bulletin, 1986, vol. 97(5), pp. 523-535. https://doi.org/10.1130/0016-7606(1986)97%3C523:STBWTA%3E2.0.CO;2">https://doi.org/10.1130/0016-7606(1986)97%3C523:STBWTA%3E2.0.CO;2

Dey S., Ali S.Z. Advances in modeling of bed particle entrainment sheared by turbulent flow. Phys. Fluid., 2018, vol. 30, 061301. https://doi.org/10.1063/1.5030458">https://doi.org/10.1063/1.5030458

Huang G., Le Ribault C., Vinkovic I., Simoëns S. Large-eddy simulation of erosion and deposition over multiple two-dimensional gaussian hills in a turbulent boundary layer. Boundary-Layer Meteorol., 2019, vol. 173, pp. 193-222. https://doi.org/10.1007/s10546-019-00463-2">https://doi.org/10.1007/s10546-019-00463-2

Malinovskaya E.A. Model of sand-particle separation by wind. Izv. Atmos. Ocean. Phys., 2017, vol. 53, pp. 516-523. https://doi.org/10.1134/S0001433817050085">https://doi.org/10.1134/S0001433817050085

Chkhetiani O.G., Kalashnik M.V., Ingel' L.K. Generation of thermal wind over a nonuniformly heated wavy surface. Izv. Atmos. Ocean. Phys., 2013, vol. 49, pp. 121-127. https://doi.org/10.1134/S0001433813020059">https://doi.org/10.1134/S0001433813020059

Ilyin A.N., Vasiliev O.A., Ilyina T.A., Nikitin K.P. Influence of resource-saving technology on fertility of grey forest soil. Agrarnyy nauchnyy zhurnal – The Agrarian Scientific Journal, 2015, no. 7, pp. 18-22.

Xie L., Ling Y., Zheng X. Laboratory measurement of saltating sand particles' angular velocities and simulation of its effect on saltation trajectory. J. Geophys. Res. Atmos., 2007, vol. 112, D12116. https://doi.org/10.1029/2006JD008254">https://doi.org/10.1029/2006JD008254

Zheng X. Mechanics of wind-blown sand movements. Springer, 2009. 309 p. https://doi.org/10.1007/978-3-540-88254-1">https://doi.org/10.1007/978-3-540-88254-1

Lorenz R.D., Zimbelman J.R. Dune worlds: How windblown sand shapes planetary landscapes. Springer, 2014. 308 p. https://doi.org/10.1007/978-3-540-89725-5">https://doi.org/10.1007/978-3-540-89725-5

Williams J.J., Butterfield G.R., Clark D.G. Aerodynamic entrainment threshold: effects of boundary layer flow conditions. Sedimentology, 1994, vol. 41, pp. 309-328. https://doi.org/10.1111/j.1365-3091.1994.tb01408.x">https://doi.org/10.1111/j.1365-3091.1994.tb01408.x

Pähtz T., Valyrakis M., Zhao X.-H., Li Z.-S. The critical role of the boundary layer thickness for the initiation of aeolian sediment transport. Geosciences, 2018, vol. 8, 314. https://doi.org/10.3390/geosciences8090314">https://doi.org/10.3390/geosciences8090314

Lämmel M., Rings D., Kroy K. A two-species continuum model for aeolian sand transport. New J. Phys., 2012, vol. 14, 093037. https://doi.org/10.1088/1367-2630/14/9/093037">https://doi.org/10.1088/1367-2630/14/9/093037

Emmerling R. The instantaneous structure of the wall pressure under a turbulent boundary layer flow. Mitteilun-gen aus dem Max-Planck Institut für Strömungsforschung, 1973, b. 9, pp. 1-25.

Gorchakov G.I., Karpov A.V., Kuznetsov G.A., Buntov D.V. Quasiperiodic saltation in the windsand flux over desertified areas. Atmos. Ocean. Opt., 2016, vol. 29, pp. 501-506. https://doi.org/10.1134/S102485601606004X">https://doi.org/10.1134/S102485601606004X

Martin R.L., Kok J.F. Distinct thresholds for the initiation and cessation of aeolian saltation from field measurements. J. Geophys. Res. Earth Surface, 2018, vol. 123, pp. 1546-1565. https://doi.org/10.1029/2017JF004416">https://doi.org/10.1029/2017JF004416

Kulikov A.I., Tsydypov B.Z., Khamnaeva G.G., Sodnomov B.V. On quantitative parameters of urbanized territory pollution in the context of desertification processes (case study of the town of Zakamensk, Buryatia). Vestnik IrGTU – Proceedings of Irkutsk State Technical University, 2014, no. 12(95), pp. 75-82.

Dupont S., Bergametti G., Simoëns S. Modeling aeolian erosion in presence of vegetation. J. Geophys. Res. Earth Surface, 2014, vol. 119, pp. 168-187. https://doi.org/10.1002/2013JF002875">https://doi.org/10.1002/2013JF002875

Biegert E., Vowinckel B., Meiburg E. A collision model for grain-resolving simulations of flows over dense, mobile, polydisperse granular sediment beds. J. Comput. Phys., 2017, vol. 340, pp. 105-127. https://doi.org/10.1016/j.jcp.2017.03.035">https://doi.org/10.1016/j.jcp.2017.03.035

Liu Y., Fang H., Huang L., He G. Numerical simulation of the production of three-dimensional sediment dunes. Phys. Fluid., 2019, vol. 31, 096603. https://doi.org/10.1063/1.5108741">https://doi.org/10.1063/1.5108741

Wang P., Feng S., Zheng X., Sung H.J. The scale characteristics and formation mechanism of aeolian sand streamers based on large eddy simulation. J. Geophys. Res. Atmos., 2019, vol. 124, pp. 11372-11388. https://doi.org/10.1029/2019jd031081">https://doi.org/10.1029/2019jd031081

Wang C., Anderson W. Turbulence coherence within canonical and realistic aeolian dune-field roughness sublayers. Boundary-Layer Meteorol., 2019, vol. 173, pp. 409-434. https://doi.org/10.1007/s10546-019-00477-w">https://doi.org/10.1007/s10546-019-00477-w

Siminovich A., Elperin T., Katra I., Kok J.F., Sullivan R., Silvestro S., Yizhaq H. Numerical study of shear stress distribution over sand ripples under terrestrial and Martian conditions. J. Geophys. Res. Planets, 2019, vol. 124, pp. 175‑185. https://doi.org/10.1029/2018JE005701">https://doi.org/10.1029/2018JE005701

Yang X.I.A., Xu H.H.A., Huang X.L.D., Ge M.-W. Drag forces on sparsely packed cube arrays. J. Fluid Mech., 2019, vol. 880, pp. 992-1019. https://doi.org/10.1017/jfm.2019.726">https://doi.org/10.1017/jfm.2019.726

Michelsen B., Strobl S., Parteli E.J.R., Pöschel T. Two-dimensional airflow modeling underpredicts the wind velocity over dunes. Scientific reports, 2015, vol. 5, 16572. https://doi.org/10.1038/srep16572">https://doi.org/10.1038/srep16572

Lignarolo L., Gorlé C., Parente A., Benocci C. Proc. of the13th Int. Conf. on Wind Engineering. ICWE13, Amsterdam, Netherlands, July 10-15, 2011. https://www.researchgate.net/publication/247778744_Large_eddy_simulation_of_the_atmospheric_boundary_layer_using_OpenFOAM">https://www.researchgate.net/publication/247778744_Large_eddy_simulation_of_the_atmospheric_boundary_layer_using_OpenFOAM

Ali M.S.M., Salim S.A.Z.S., Ismail M.H., Muhamad S., Mahzan M.I. Aeolian tones radiated from flow over bluff bodies. Open Mech. Eng. J., 2013, vol. 7. pp. 48-57. https://doi.org/10.2174/1874155X01307010048">https://doi.org/10.2174/1874155X01307010048

Araújo A.D., Parteli E.J.R., Pöschel T., Andrade J.S., Herrmann H.J. Numerical modeling of the wind flow over a transverse dune. Scientific reports, 2013, vol. 3, 2858. https://doi.org/10.1038/srep02858">https://doi.org/10.1038/srep02858

Faria R., Ferreira A.D., Sismeiro J.L., Mendes J.C.F., Sousa A.C.M. Wind tunnel and computational study of the stoss slope effect on the aeolian erosion of transverse sand dunes. Aeolian Research, 2011, vol. 3. pp. 303-314. https://doi.org/10.1016/j.aeolia.2011.07.004">https://doi.org/10.1016/j.aeolia.2011.07.004

Kang L., Guo L. Eulerian–Lagrangian simulation of aeolian sand transport. Powder tech., 2006, vol. 162, pp. 111-120. https://doi.org/10.1016/j.powtec.2005.12.002">https://doi.org/10.1016/j.powtec.2005.12.002

Parsons D.R., Wiggs G.F.S., Walker I.J., Ferguson R.I., Garvey B.G. Numerical modelling of airflow over an idealised transverse dune. Environ. Model. Software, 2004, vol. 19, pp. 153-162. https://doi.org/10.1016/S1364-8152%2803%2900117-8">https://doi.org/10.1016/S1364-8152%2803%2900117-8

Schatz V., Herrmann H.J. Flow separation in the lee side of transverse dunes: A numerical investigation. Geomorphology, 2006, vol. 81, pp. 207-216. https://doi.org/10.1016/j.geomorph.2006.04.009">https://doi.org/10.1016/j.geomorph.2006.04.009

Tong D., Huang N. Numerical simulation of saltating particles in atmospheric boundary layer over flat bed and sand ripples. J. Geophys. Res. Atmos., 2012, vol. 117, D16205. https://doi.org/10.1029/2011JD017424">https://doi.org/10.1029/2011JD017424

Turpin C., Badr T., Harion J.-L. Numerical modelling of aeolian erosion over rough surfaces. Earth Surface Processes and Landforms, 2010, vol. 35, pp. 1418-1429. https://doi.org/10.1002/esp.1980">https://doi.org/10.1002/esp.1980

Zheng X.J., Bo T.L., Xie L. DPTM simulation of aeolian sand ripple. Sci. China Ser. G-Phys. Mech. As., 2008, vol. 51, pp. 328-336. https://doi.org/10.1007/s11433-008-0020-y">https://doi.org/10.1007/s11433-008-0020-y

Li Y., Guo Y. Numerical simulation of aeolian dusty sand transport in a marginal desert region at the early entrainment stage. Geomorphology, 2008, vol. 100, pp. 335-344. https://doi.org/10.1016/j.geomorph.2008.01.006">https://doi.org/10.1016/j.geomorph.2008.01.006

Ji S.B., Gerber A.G., Sousa A.C.M. A convection–diffusion CFD model for aeolian particle transport. Int. J. Numer. Meth. Fluid., 2004, vol. 45, pp. 797-817. https://doi.org/10.1002/fld.724">https://doi.org/10.1002/fld.724

Deryabina M.S., Martynov S.I. Simulation of the flow of a viscous fluid with particles through porous medium cells. Vychisl. mekh. splosh. sred – Computational Continuum Mechanics, 2016, vol. 9, no. 4, pp. 420-429. https://doi.org/10.7242/1999-6691/2016.9.4.35">https://doi.org/10.7242/1999-6691/2016.9.4.35

Martynov S.I., Tkach L.Yu. Dynamics of chain particle aggregates in viscous flow. Comput. Math. and Math. Phys., 2016, vol. 56, pp. 826-840. https://doi.org/10.1134/S0965542516050158">https://doi.org/10.1134/S0965542516050158

Garbaruk A.V., Strelets M.H., Shur M.L. Modelirovaniye turbulentnosti v raschetakh slozhnykh techeniy [Turbulence modeling in complex flow calculations]St. Petersburg, Izd-vo Politekh. un-ta, 2012. 88 p.

Perry A.E., Schofield W.H., Joubert P.N. Rough wall turbulent boundary layers. J. Fluid Mech., 1969, vol. 37, pp. 383-413. https://doi.org/10.1017/S0022112069000619">https://doi.org/10.1017/S0022112069000619

The OpenFOAM® Foundation. http://www.openfoam.org/index.php">http://www.openfoam.org/index.php

Krumbein W.C. Size frequency distributions of sediments and the normal phi curve. J. Sediment. Res., 1938, vol. 8(3), pp. 84-90. https://doi.org/10.1306/D4269008-2B26-11D7-8648000102C1865D">https://doi.org/10.1306/D4269008-2B26-11D7-8648000102C1865D

Bauer B.O., Houser C.A., Nickling W.G. Analysis of velocity profile measurements from wind-tunnel experiments with saltation. Geomorphology, 2004, vol. 59, pp. 81-98. https://doi.org/10.1016/j.geomorph.2003.09.008">https://doi.org/10.1016/j.geomorph.2003.09.008

Gu Z., Zhao Y., Li Y., Yu Y., Feng X. Numerical simulation of dust lifting within dust devils-simulation of an intense vortex. J. Atmos. Sci., 2006, vol. 63(10), pp. 2630-2641. https://doi.org/10.1175/JAS3748.1">https://doi.org/10.1175/JAS3748.1

Roney J.A., White B.R. Definition and measurement of dust aeolian thresholds. J. Geophys. Res. Earth Surface, 2004, vol. 109, F01013. https://doi.org/10.1029/2003JF000061">https://doi.org/10.1029/2003JF000061

Minvielle F., Marticorena B., Gillette D.A., Lawson R.E., Thompson R., Bergametti G. Relationship between the aerodynamic roughness length and the roughness density in cases of low roughness density. Environ. Fluid Mech., 2003, vol. 3, pp. 249-267. https://doi.org/10.1023/A:1022830119554">https://doi.org/10.1023/A:1022830119554

Durst F., Miloievic D., Schönung B. Eulerian and Lagrangian predictions of particulate two-phase flows: a numerical study. Appl. Math. Model., 1984, vol. 8, pp. 101-115. https://doi.org/10.1016/0307-904X(84)90062-3">https://doi.org/10.1016/0307-904X(84)90062-3

Krupp H. Particle adhesion: theory and experiment. Advan. Colloid Interface Sci., 1967, vol. 1, pp. 111-239. https://doi.org/10.1016/0001-8686(67)80004-6">https://doi.org/10.1016/0001-8686(67)80004-6

Published

2020-06-30

Issue

Section

Articles

How to Cite

Malinovskaya, E. A., & Chkhetiani, O. G. (2020). On the conditions for the wind removal of soil particles. Computational Continuum Mechanics, 13(2), 175-188. https://doi.org/10.7242/1999-6691/2020.13.2.14