ANSYS research of shape memory effects in cross-linked polyethylene products

Authors

  • Oleg Yur’yevich Smetannikov Perm National Research Polytechnic University
  • Yuliya Borisovna Faskhutdinova Perm National Research Polytechnic University
  • Evgeniy Vladimirovich Subbotin Perm National Research Polytechnic University

DOI:

https://doi.org/10.7242/1999-6691/2020.13.2.11

Keywords:

shape memory, cross-linked polyethylene, shrinkable tube, thermomechanical behavior

Abstract

This work focuses on determining the causes of axial shrinkage of heat-shrinkable pipes made of cross-linked polyethylene at the expansion stage of their production process and the ways to eliminate this problem. For this purpose, thermomechanical behavior of products made of polymer materials with shape memory was numerically simulated. First, an appropriate physical model was selected in the ANSYS package to describe the thermomechanical behavior of polymer materials with shape memory, an experimental program was developed and implemented to identify the material constants of cross-linked polyethylene, and several verification tests were performed. Then, a simplified numerical simulation of the thermomechanical behavior of the heat-shrinkable tube was performed using the ANSYS software package, which does not take into account the movement of the work piece through the expander cavity. To eliminate longitudinal shrinkage, it is proposed to preserve the longitudinal size of the work piece by applying an axial force of a certain value. The axial force values corresponding to a longitudinal shrinkage not exceeding 1% and a 15% longitudinal shrinkage were found. It was established that the longitudinal shrinkage is caused by the extremely high axial force. The last section of the article presents a numerical simulation of the real technological stage of expansion of a heat-shrinkable tube. The values of the axial force acting in the work piece are calculated when the feed and extraction speeds of the work piece from the expander are equal to ensure the constancy of its length in the first case and when the initial elongation reaches 15% in the second case. The calculated data confirm the initial assumption about the causes of longitudinal shrinkage.

Downloads

Download data is not yet available.
Supporting Agencies
Работа выполнена при финансовой поддержке РФФИ и Пермского края (проект №19-41-590008 р_а).

References

Lendlein A., Gould O.E.C. Reprogrammable recovery and actuation behavior of shape-memory polymers. Nat. Rev. Mater., 2019, vol. 4, pp. 116-133. https://doi.org/10.1038/s41578-018-0078-8">https://doi.org/10.1038/s41578-018-0078-8

Ranganatha Swamy M.K., Mallikarjun U.S., Udayakumar V. Synthesis and characterization of shape memory polymers. IOP Conf. Ser.: Mater. Sci. Eng., 2019, vol. 577, 012095. https://doi.org/10.1088/1757-899X/577/1/012095">https://doi.org/10.1088/1757-899X/577/1/012095

Matveenko V.P., Smetannikov O. Yu., Trufanov N.A., Shardakov I.N. Termomekhanika polimernykh materialov v usloviyakh relaksatsionnogo perekhoda [Thermomechanics of polimer materials in a relaxation transition]. Moscow, Fizmatlit, 2009. 176 p.

Oniskiv V.D., Stolbov V.Iu., Hatiamov R.K. On one control problem of the process of gamma irradiation of the polyethylene. Prikladnaya matematika i voprosy upravleniya – Applied Mathematics and Control Sciences, 2019, no. 3, pp. 119-130.

Tikhomirova K.A., Trufanov N.A. Experimental calibration of constitutive model for an amorphous shape memory polymer under large deformations. Vestnik PNIPU. Mekhanika – PNRPU Mechanics Bulletin, 2015, no. 2, pp 151‑163. https:/doi/org/10.15593/perm.mech/2015.2.10

Malkin A.Ya. The state of the art in the rheology of polymers: Achievements and challenges. Polym. Sci. Ser. A, 2009, vol. 51, pp. 80-102. https://doi.org/10.1134/S0965545X09010076">https://doi.org/10.1134/S0965545X09010076

Li J., Duan Q., Zhang E., Wang J. Applications of shape memory polymers in kinetic buildings. Adv. Mater. Sci. Eng., 2018, vol. 2018, 7453698. https://doi.org/10.1155/2018/7453698">https://doi.org/10.1155/2018/7453698

Wang Z., Chang M., Kong F., Yun K. Optimization of thermo-mechanical properties of shape memory polymer composites based on a network model. Chem. Eng. Sci., 2019, vol. 207, pp. 1017-1029. https://doi.org/10.1016/j.ces.2019.07.022">https://doi.org/10.1016/j.ces.2019.07.022

Kayumov R.A., Strakhov D.E. The question of the simulation shape memory effect in polymer mufti. NAU, 2015, no. 4-2, pp. 107-111.

Arvanitakis A.I. A constitutive level-set model for shape memory polymers and shape memory polymeric composites. Arch. Appl. Mech., 2019, vol. 89, pp. 1939-1951. https://doi.org/10.1007/s00419-019-01553-w">https://doi.org/10.1007/s00419-019-01553-w

Rogovoi A.A., Stolbova O.S. Final deformations in alloys and polymers with memory of the shape. Uchenyye zapiski KnAGTU – Scholarly Notes of KNASTU, 2018, vol. 1, no. 3, pp. 6-17.

Adamov A.A., Matveyenko V.P., Trufanov N.A., Shardakov I.N. Metody prikladnoy vyazkouprugosti [Applied viscoelasticity methods].  Ekaterinburg: UrO RAN, 2003, 411 p.

Thanakhun K., Puttapitukporn T. PDMS material models for anti-fouling surfaces using finite element method. EJ, 2019, vol. 23, pp. 381-398. https://doi.org/10.4186/ej.2019.23.6.381.

Shil'ko S.V., Gavrilenko S.L., Panin S.V., Aleksenko V.O. Determination of rheological parameters of polymer materials by identification of Prony viscoelastic model according to data of static and dynamic tests. Mekhanikamashin, mekhanizmovimaterialov– Mechanics of Machines, Mechanisms and Materials, 2017, no. 3(40), pp. 53-58

Zachinyaev G.M., Kondratov A.P. Thermal cyclic tests of shrink polymeric products with the shape memory. Zavodskaya laboratoriya. Diagnostika materialov – Industrial Laboratory. Diagnostics of Materials, 2015, vol. 81, no. 10, pp. 57-61.

Posobiye po proyektirovaniyu tekhnologicheskikh truboprovodov iz plastmassovykh trub / NPO «Plastik» [A guide for the design of technological pipelines from plastic pipes]. Moscow, Stroyizdat, 1984. 144 p. Posobiye po proyektirovaniyu tekhnologicheskikh truboprovodov iz plastmassovykh trub / NPO «Plastik». M.: Stroyizdat,

Simo J.C. On fully three-dimensional finite strain viscoelastic damage model: Formulation and computational aspects. Comput. Meth. Appl. Mech. Eng., 1987, vol. 60, pp. 153-173. https://doi.org/10.1016/0045-7825(87)90107-1">https://doi.org/10.1016/0045-7825(87)90107-1

Published

2020-06-30

Issue

Section

Articles

How to Cite

Smetannikov, O. Y., Faskhutdinova, Y. B., & Subbotin, E. V. (2020). ANSYS research of shape memory effects in cross-linked polyethylene products. Computational Continuum Mechanics, 13(2), 134-149. https://doi.org/10.7242/1999-6691/2020.13.2.11