The propagation of bending waves in a beam, the material of which accumulates damage during its operation

Authors

  • Dmitriy Maksimovich Brikkel National Research Lobachevsky State University of Nizhny Novgorod
  • Vladimir Ivanovich Erofeev National Research Lobachevsky State University of Nizhny Novgorod; Mechanical Engineering Research Institute of RAS
  • Anna Viktorovna Leonteva National Research Lobachevsky State University of Nizhny Novgorod; Mechanical Engineering Research Institute of RAS

DOI:

https://doi.org/10.7242/1999-6691/2020.13.1.9

Keywords:

beam, material damage, bending wave, dispersion, attenuation, geometric nonlinearity, mathematical modeling

Abstract

The linear and nonlinear formulations of a self-consistent material model are developed based on the equation of the bending vibrations of the beam and the kinetic equation of damage accumulation in its material. The beam is considered endless. Such idealization is permissible if optimal damping devices are located at its boundaries, that is the parameters of boundary fixing are such that disturbances acting on it will not be reflected. This allows us to exclude boundary conditions from the beam model and consider the vibrations propagating along the beam as traveling bending waves. As a result of analytical studies and numerical modeling, it was found that the damage of the material involves a frequency-dependent attenuation and significantly changes the nature of the dispersion of the phase velocity of a bending elastic wave. Note that in a classical Euler-Bernoulli beam there is one dispersion branch for bending waves at any frequency value, whereas for a beam with accumulated material damage in the entire frequency range there are two dispersion branches, characterizing wave propagation, and two dispersion branches, characterizing its attenuation. The problem of the formation of intense bending waves of a stationary profile is considered in the framework of a geometrically nonlinear model of a damaged beam.. It is shown that such essentially non-sinusoidal waves can be either periodic or solitary (localized in space).The dependencies relating the parameters of the waves (amplitude, width, wavelength) with the damage to the material are determined. It is shown that the amplitude of the periodic wave and the amplitude of the solitary wave increase with increasing material damage parameter, while the length of the periodic wave and the width of the solitary wave decrease with increase of this parameter.

Downloads

Download data is not yet available.
Supporting Agencies
Работа выполнена при поддержке РФФИ (проект № 19-38-90282).

References

Kachanov L.M. Introduction to continuum damage mechanics. New York. Springer, 1986. 140 p.

Rabotnov Yu.N. Creep problems in structural members. Amsterdam, North-Holland Publishing Company, 1969. 836 p.

Maugin G.A. The thermomechanics of plasticity and fracture. Cambridge University Press, 1992. 369 p.

Collins J.A. Failure of materials in mechanical design: Analysis, prediction, prevention. 2nd Edition, John Wiley & Sons, 1993. 654 p.

Makhutov N.A. Deformatsionnyye kriterii razrusheniya i raschet elementov konstruktsiy na prochnost’ [Deformation criteria of fracture and calculation of construction elements for strength]. Moscow, Mashinostroyeniye, 1981. 272 p.

Bondar’ V.S. Neuprugost’. Varianty teorii [Inelasticity. Theory options]. Moscow, Fizmatlit, 2004. 144 p.

Volkov I.A., KorotkikhYu.G. Uravneniya sostoyaniya vyazkouprugoplasticheskikh sred s povrezhdeniyami [Equations of state of viscoelastic-plastic media with damage]. Moscow, Fizmatlit, 2008. 424 p.

VolkovI.A., Igumnov L.A. Vvedeniye v kontinual’nuyu mekhaniku povrezhdennoy sredy [Introduction to the continuum mechanics of a damaged medium]. Moscow, Fizmatlit, 2017. 304 p.

Lokoshchenko A.M. Polzuchest’ i dlitel’naya prochnost’ metallov [Creep and durability of metals]. Moscow, Fizmatlit, 2016. 504 p.

Klyuyev V.V. (ed.) Nerazrushayushchiy kontrol’: spravochnik: v 7 tomakh. Tom 3. Ul’trazvukovoy kontrol’ [Nondestructive testing. Handbook in 7 volums. Vol. 3: Ultrasound testing]. Moscow, Mashinostroyeniye, 2004. 864 p.

Uglov A.L., Erofeyev V.I., Smirnov A.N. Akusticheskiy kontrol’ oborudovaniya pri izgotovlenii i ekspluatatsii [Acoustic control of equipment during its manufacture and operation]. M.: Nauka, 2009. 280 p.

Erofeev V.I., Nikitina E.A. The self-consistent dynamic problem of estimating the damage of a material by an acoustic method. Acoust. Phys., 2010, vol. 56, no. 4, pp. 584-587. https://doi.org/10.1134/S106377101004024X">https://doi.org/10.1134/S106377101004024X

Erofeev V.I., Nikitina E.A. Localization of a strain wave propagating in damaged material. J. Mach. Manuf. Reliab., 2010, vol. 39, pp. 559-561. https://doi.org/10.3103/S1052618810060087">https://doi.org/10.3103/S1052618810060087

Erofeev V.I., Nikitina E.A., Sharabanova A.V. Wave propagation in damaged materials using a new generalized continuum. Mechanics of generalized continua. One hundred years after the Cosserats, ed. G.A. Maugin, A.V. Metrikine. Springer, 2010. P. 143-148. https://doi.org/10.1007/978-1-4419-5695-8_15">https://doi.org/10.1007/978-1-4419-5695-8_15

Erofeev V.I., Nikitina E.A., Smirnov S.I. Acoustoelasticity of damaged materials. Kontrol’. Diagnostika – Control. Diagnostics, 2012, no. 3, pp. 24-26.

Stulov A., Erofeev V. Frequency-dependent attenuation and phase velocity dispersion of an acoustic wave propagating in the media with damages. Generalized Continua as Models for Classical and Advanced Materials, ed. H. Altenbach, S. Forest, Springer, 2016, P. 413-423. https://doi.org/10.1007/978-3-319-31721-2_19">https://doi.org/10.1007/978-3-319-31721-2_19

Dar’enkov A.B., Plekhov A.S., Erofeev V.I. Effect of material damage on parameters of a torsional wave propagated in a deformed rotor. Procedia Engineering, 2016, vol. 150, pp. 86-90. https://doi.org/10.1016/j.proeng.2016.06.722">https://doi.org/10.1016/j.proeng.2016.06.722

Erofeev V.I., Lisenkova E.E. Excitation of waves by a load moving along a damaged one-dimensional guide lying on an elastic foundation. J. Mach. Manuf. Reliab., 2016, vol. 45, pp. 495-499. https://doi.org/10.3103/S1052618816060054">https://doi.org/10.3103/S1052618816060054

Erofeev V.I., Leonteva A.V., Malkhanov A.O. Influence of material damage on propagation of a longitudinal magnetoelastic wave in a rod. Vychisl. mekh. splosh. sred – Computational Continuum Mechanics, 2018, vol. 11, no. 4, pp. 397-408. https://doi.org/10.7242/1999-6691/2018.11.4.30">https://doi.org/10.7242/1999-6691/2018.11.4.30

Antonov A.M., Erofeev V.I., Leonteva A.V. Influence of material damage on Rayleigh wave propagation along half-space boundary. Vychisl. mekh. splosh. sred – Computational Continuum Mechanics, 2019, vol. 12, no. 3, pp. 293-300. https://doi.org/10.7242/1999-6691/2019.12.3.25">https://doi.org/10.7242/1999-6691/2019.12.3.25

Brikkel D.M., Erofeev V.I., Nikitina E.A. Influence of material damage on the parameters of a nonlinear longitudinal wave which spread in a rod. IOP Conf. Ser.: Mater. Sci. Eng., 2020, vol. 747, 012053. https://doi.org/10.1088/1757-899X/747/1/012048">https://doi.org/10.1088/1757-899X/747/1/012048

Bolotin V.V. (ed.) Vibratsii v tekhnike: spravochnik: v 6 tomakh. T. 1. Kolebaniya lineynykh sistem [Vibrations in the technics. Handbook in 6 volums. Vol. 1: Oscillations of linear systems]. Moscow, Mashinostroyeniye, 1978. 352 p.

Vesnitskiy A.I. Izbrannyye trudy po mekhanike [Selected works on mechanics]. Nizhny Novgorod, Nash Dom, 2010. 248 p.

Moiseyev N.N. Asimptoticheskiye metody nelineynoy mekhaniki [Asymptotic methods of nonlinear mechanics]. Moscow, Nauka, 1981. 400 p.

Published

2020-03-30

Issue

Section

Articles

How to Cite

Brikkel, D. M., Erofeev, V. I., & Leonteva, A. V. (2020). The propagation of bending waves in a beam, the material of which accumulates damage during its operation. Computational Continuum Mechanics, 13(1), 108-116. https://doi.org/10.7242/1999-6691/2020.13.1.9