The motion of the concentration front and adsorption of impurity during pumping of a nanofluid through a porous medium

Authors

  • Vitaliy Anatol’yevich Demin Perm State National Research University; Perm National Research Polytechnic University
  • Boris Sergeyevich Maryshev Perm State National Research University; Institute of Continuous Media Mechanics UB RAS
  • Aleksandr Igorevich Menshikov Perm State National Research University

DOI:

https://doi.org/10.7242/1999-6691/2020.13.1.7

Keywords:

porous media, processes of adsorption and desorption, filtration, numerical experiment

Abstract

The direct numerical simulation of the process of filtering a nanofluid through a porous medium of artificial origin is performed. The phenomenon of pore plugging due to the adsorption of nanoparticles on the walls of the channels is investigated. The theoretical study was initiated by the necessity to improve the technological process of saturation of porous materials by powdery media with desired properties. The description of the filtration process is based on Darcy's law with consideration for the variability of porosity and permeability of the medium, which are related by the Kozeny-Carman formula. The model takes into account the non-linear effect of the backward response to pore plugging, which lies in the fact that the filtration rate essentially decreases causing thereby the enhancement of impurity absorption. Based on the method of finite differences, an algorithm for solving the problem is constructed, and a program code for describing the process of penetration of the suspension into a rectangular sample is developed. The results of numerical simulation are used to plot the fields of velocity, pressure, porosity, permeability, and concentrations of mobile and immobile impurities, which make it possible to trace the dynamics of the filtration process. The obtained numerical results support the observation that the main factor contributing to the flow pattern and pore plugging is the nonlinear interaction between the nanofluid flow and porous material. It is shown that the change in the distribution of immobile impurity in a porous medium is determined by the dynamics of the concentration front, the steepness and speed of which depends on the ratio of the problem parameters (parameters of adsorption-desorption, diffusion coefficient, permeability and pressure difference at the inlet and outlet of the porous material. The results of problem solution obtained within the framework of the advanced MIM model from the beginning of the process to complete pore plugging are used to estimate the time of the technological process, which is found to be in good agreement with experimental data on the saturation of artificial porous materials.

Downloads

Download data is not yet available.
Supporting Agencies
Работа выполнена при финансовой поддержке Министерства образования и науки Пермского края (соглашение № С-26/788).

References

Deryagin B.V., Churaev B.V., Muller V.M. Poverkhnostnyye sily [Surface forces]. Moscow, Nauka, 1985. 398 p.

Brooks R.H., Corey A.T. Hydraulic properties of porous media. Hydrology Papers, 1964, no. 3. Colorado State Univ., Fort Collins, CO.

Van Genuchten M.Th. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J., 1980, vol. 44, pp. 892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x">https://doi.org/10.2136/sssaj1980.03615995004400050002x

Schumer R., Benson D.A., Meerschaert M.M., Bauemer B. Fractal mobile/immobile solute transport. Water Resour. Res., 2003, vol. 39, 1296. https://doi.org/10.1029/2003WR002141">https://doi.org/10.1029/2003WR002141

Van Genuchten M.Th., Wierenga P.J. Mass transfer studies in sorbing porous media. I. Analytical solutions. Soil Sci. Soc. Am. J., 1976, vol. 40, pp. 473-480. https://doi.org/10.2136/sssaj1976.03615995004000040011x">https://doi.org/10.2136/sssaj1976.03615995004000040011x

Maryshev B.S. Mixture filtration through porous enclosure with presence of pore clogging. Vestnik PGU. Fizika – Bulletin of Perm University. Physics, 2015, no. 3(31), pp. 22-32.

Horton C.W., Rogers F.T. Convection currents in a porous medium. J. Appl. Phys., 1945, vol. 16, pp. 367-370. https://doi.org/10.1063/1.1707601">https://doi.org/10.1063/1.1707601

Valdes J.R., Santamarina J.C. Particle clogging in radial flow: Microscale mechanisms. SPE J., 2006, vol. 11, pp. 193-198. https://doi.org/10.2118/88819-PA">https://doi.org/10.2118/88819-PA

Devereaux O.F., de Bruyn P.L. Interaction of plane-parallel double layers. Cambridge, MIT Press, 1963. 361 p.

Elimelech M., Gregory J., Jia X. Particle deposition and aggregation. Measurement, modelling and simulation. Woburn, Butterworth-Heinemann, 1995. 458 p. P. 43-46.

Miguel A.F., Reis A.H. Transport and deposition of fine mode particles in porous filters. J. Porous Media, 2006, vol. 8, pp. 731-744. https://doi.org/10.1615/JPorMedia.v9.i8.30">https://doi.org/10.1615/JPorMedia.v9.i8.30

Deans H.A. A mathematical model for dispersion in the direction of flow in porous media. SPE J., 1963, vol. 3, pp. 49-52. https://doi.org/10.2118/493-PA">https://doi.org/10.2118/493-PA

Kozeny J. Ueber Kapillare Leitung des Wassers im Boden. Sitzungsber Akad. Wiss., 1927, vol. 136, pp. 271-306.

Nield D.A., Bejan A. Convection in porous media. Springer, 2006. 654 p. https://doi.org/10.1007/0-387-33431-9">https://doi.org/10.1007/0-387-33431-9

Leybenzon L.S. Dvizheniye prirodnykh zhidkostey i gazov v poristoy srede [Motion of natural liquids and gases in porous media]. Moscow, Gostekhizdat, 1947. 244 p.

Barenblatt G.I., Entov V.M., Ryzhik V.M. Dvizheniye zhidkostey i gazov v prirodnykh plastakh [Motion of liquids and gases in natural bed]. Moscow, Nedra, 1984. 211 p.

Clark A. The chemisorptive bond: Basic concepts. Academic Press, 1974. 222 p.

Schwarzer S. Sedimentation and flow through porous media: Simulating dynamically coupled discrete and continuum phases. Phys. Rev. E, 1995, vol. 52, 6461. https://doi.org/10.1103/PhysRevE.52.6461">https://doi.org/10.1103/PhysRevE.52.6461

Salles J., Thovert J.F., Adler P.M. Deposition in porous media and clogging. Chem. Eng. Sci., 1993, vol. 48, pp. 2839‑2858. https://doi.org/10.1016/0009-2509(93)80031-K">https://doi.org/10.1016/0009-2509(93)80031-K

Klimenko L.S., Maryshev B.S. Modeling of the immobilization process by the random walk method. Vestnik PGU. Fizika – Bulletin of Perm University. Physics, 2016, no. 1(32), pp. 25-32. https://doi.org/10.17072/1994-3598-2016-1-25-32">https://doi.org/10.17072/1994-3598-2016-1-25-32

Herzig J.P., Leclerc D.M., Le Goff P. Flow of suspensions through porous media – application to deep filtration. Ind. Eng. Chem., 1970, vol. 62, no. 5, pp. 8-35. https://doi.org/10.1021/ie50725a003">https://doi.org/10.1021/ie50725a003

Gallyamov M.N. Povysheniye effektivnosti ekspluatatsii neftyanykh skvazhin na pozdney stadii razrabotki mestorozhdeniy [Improving the efficiency of oil wells exploitation on the late stage of field development]. Moscow, Nedra, 1978. 207 p.

Maryshev B.S. On the horizontal pressure filtration of the mixture through a porous medium with clogging. Vestnik PGU. Fizika – Bulletin of Perm University. Physics, 2016, no. 3(34), pp. 12-21. https://doi.org/10.17072/1994-3598-2016-3-12-21">https://doi.org/10.17072/1994-3598-2016-3-12-21

Pyannikov N.P., Maryshev B.S. The pressure pumping of mixture through a closed two-dimensional porous domain with clogging. Vestnik PGU. Fizika – Bulletin of Perm University. Physics, 2018, no. 3(41), pp. 14-23. https://doi.org/10.17072/1994-3598-2018-3-14-23">https://doi.org/10.17072/1994-3598-2018-3-14-23

Maryshev B.S. The linear stability of vertical mixture seepage into the close porous filter with clogging. Fluid Dyn. Res., 2016, vol. 49, 015501. https://doi.org/10.1088/0169-5983/49/1/015501">https://doi.org/10.1088/0169-5983/49/1/015501

Gruesbeck C., Collins R.E. Entrainment and deposition of fine particles in porous media. SPE J., 1982, vol. 22, pp. 847‑856. https://doi.org/10.2118/8430-PA">https://doi.org/10.2118/8430-PA

Tarunin E.L. Vychislitel’nyy eksperiment v zadachakh svobodnoy konvektsii [Numerical experiment in the problems of free convection]. Irkutsk, izd-vo Irkut. un-ta, 1990. 228 p.

Кikoin I.K. (ed.) Tablitsy fizicheskikh velichin. Spravochnik [Tables of physical quantities. Handbook]. Мoscow, Atomizdat, 1976. 1008 p.

Klimenko L.S., Maryshev B.S. Numerical simulation of microchannel blockage by the random walk method. Chem. Eng. J., 2020, vol. 381, 122644. https://doi.org/10.1016/j.cej.2019.122644">https://doi.org/10.1016/j.cej.2019.122644

Churayev N.V. Fizikokhimiya protsessov massoperenosa v poristykh telakh [Physicochemical processes of mass transfer in porous media]. Moscow, Khimiya, 1990. 272 p.

Sichkar S.M., Antonov V.N., Antropov V.P. Comparative study of the electronic structure, phonon spectra, and electron-phonon interaction of ZrB2 and TiB2Phys. Rev. B, 2013, vol. 87, 064305. https://doi.org/10.1103/PhysRevB.87.064305">https://doi.org/10.1103/PhysRevB.87.064305

Alfaramawi K. Optical and dielectric dispersion parameters of general purpose furnace (GPF) carbon black reinforced butyl rubber. Polym. Bull., 2018, vol. 75, pp. 5713-5730. https://doi.org/10.1007/s00289-018-2353-7">https://doi.org/10.1007/s00289-018-2353-7

Kraynov V.P. Kachestvennyye metody v fizicheskoy kinetike i gidrogazodinamike [Qualitative methods in physical kinetics and fluid dynamics]. Moscow, Vysshaya shkola, 1989. 224 p.

Published

2020-03-30

Issue

Section

Articles

How to Cite

Demin, V. A., Maryshev, B. S., & Menshikov, A. I. (2020). The motion of the concentration front and adsorption of impurity during pumping of a nanofluid through a porous medium. Computational Continuum Mechanics, 13(1), 83-97. https://doi.org/10.7242/1999-6691/2020.13.1.7