Modeling of rheological properties of polyethylene melts during uniaxial stretching

Authors

  • Mariya Aleksandrovna Makarova Altai State Technical University
  • Anzhela Sergeyevna Malygina Altai State Technical University
  • Grigoriy Vladimirovich Pyshnograi Altai State Technical University
  • Gleb Olegovich Rudakov Altai State University

DOI:

https://doi.org/10.7242/1999-6691/2020.13.1.6

Keywords:

rheology, uniaxial elongation, polyethylene melts, multimode rheological model, elongation viscosity, the Runge-Kutta method

Abstract

The paper considers the use of the modified Vinogradov and Pokrovskii rheological model to describe the occurrence of stresses in a polymer melt during uniaxial stretching. One of the changes introduced in the model concerns the anisotropic law of internal friction, which makes it possible to take into account the nonmonotonic dependence of the stationary elongational viscosity on the extension rate. Another change is associated with the multimode nature of the relaxation processes accompanied the deformation of the polymer melt. The above changes made it possible to evaluate an increase in the longational viscosity of the melt, which was found to be three times higher than its shear viscosity in the linear deformation mode. A comparison between the results of calculation and the experimental data available in the literature was performed for five industrial samples of polyethylene with a branched structure of macromolecules. The calculations according to the mathematical model were carried out by the Runge-Kutta method. The components of the relaxation spectrum were similar to those used in the experiment. Other parameters of the model were selected on the premise that there is the best possible fit of the theoretical and experimental time dependences of the elongational viscosity of the melt during stretching. Despite the fact that the proposed multimode model was a development of theoretical concepts of the dynamics of linear polymer chains, it allows us to accurately describe the nonstationary time dependences of the viscosity of branched polymer melts under uniaxial tension. A comparison between the results of calculations made in the framework of the above model and the models described in the literature shows that the predictions of the former are comparable with the predictions of such advanced models as the Leonov and Prokunin model, the multimode Giesekus model, the “pom-pom” model, and the extended “pom-pom” model, MSF model, and significantly better than the results of its single-mode approximation.

Downloads

Download data is not yet available.

References

Doi M., Edwards S.F. The theory of polymer dynamics. Oxford: Clarendon Press, 1988. 391 p..

McLeish T.C.B. Molecular rheology of H-polymers. Macromolecules, 1988, vol. 21, pp. 1062-1070. https://doi.org/10.1021/ma00182a037">https://doi.org/10.1021/ma00182a037

McLeish T.C.B., Larson R.G. Molecular constitutive equations for a class of branched polymers: The pom-pom polymer. J. Rheol., 1998, vol. 42, pp. 81-110. https://doi.org/10.1122/1.550933">https://doi.org/10.1122/1.550933

Inkson N.J., McLeish T.C.B., Harlen O.G., Groves D.J. Predicting low density polyethylene melt rheology in elongational and shear flows with “pom-pom” constitutive equations. J. Rheol., 1999, vol. 43, pp. 873-896. https://doi.org/10.1122/1.551036">https://doi.org/10.1122/1.551036

Marrucci G., Ianniruberto G. Interchain pressure effect in extensional flows of entangled polymer melts. Macromolecules, 2004, vol. 37, pp. 3934-3942. https://doi.org/10.1021/ma035501u">https://doi.org/10.1021/ma035501u

Majesté J.C., Carrot C., Stanescu P. From linear viscoelasticity to the architecture of highly branched polyethylene. Rheol. Acta, 2003, vol. 42, pp. 432-442. https://doi.org/10.1007/s00397-003-0297-8">https://doi.org/10.1007/s00397-003-0297-8

Mead D.W., Larson R.G., Doi M. A molecular theory for fast flows of entangled polymers. Macromolecules, 1998, vol. 31, pp. 7895-7914. https://doi.org/10.1021/ma980127x">https://doi.org/10.1021/ma980127x

Rolón-Garrido V.H., Wagner M.H. The MSF model: relation of nonlinear parameters to molecular structure of long chain branched polymer melts. Rheol. Acta, 2007, vol. 46, pp. 583-593. https://doi.org/10.1007/s00397-006-0136-9">https://doi.org/10.1007/s00397-006-0136-9

Rolón-Garrido V.H., Wagner M.H., Luap C., Schweizer T. Modeling non-Gaussian extensibility effects in elongation of nearly monodisperse polystyrene melts. J. Rheol., 2006, vol. 50, pp. 327-340. https://doi.org/10.1122/1.2184127">https://doi.org/10.1122/1.2184127

Rolón-Garrido V.H., Pivokonsky R., Filip P., Zatloukal M., Wagner M.H. Modelling elongational and shear rheology of two LDPE melts. Rheol. Acta, 2009, vol. 48, pp. 691-697. https://doi.org/10.1007/s00397-009-0366-8">https://doi.org/10.1007/s00397-009-0366-8

Aho J., Rolón-Garrido V.H., Syrjälä S.,Wagner M.H. Extensional viscosity in uniaxial extension and contraction flow – Comparison of experimental methods and application of the molecular stress function model. J. Non-Newton Fluid Mech., 2010, vol. 165, pp. 212-218. https://doi.org/10.1016/j.jnnfm.2009.12.003">https://doi.org/10.1016/j.jnnfm.2009.12.003

Pivokonsky R., Zatloukal M., Filip P. On the predictive/fitting capabilities of the advanced differential constitutive equations for branched LDPE melts. J. Non-Newton Fluid Mech., 2006, vol. 135, pp. 58-67. https://doi.org/10.1016/j.jnnfm.2006.01.001">https://doi.org/10.1016/j.jnnfm.2006.01.001

Pivokonsky R., Filip P. Predictive/fitting capabilities of differential constitutive models for polymer melts – reduction of nonlinear parameters in the eXtended Pom-Pom model. Colloid Polym. Sci., 2014, vol. 292, pp. 2753-2763. https://doi.org/10.1007/s00396-014-3308-7">https://doi.org/10.1007/s00396-014-3308-7

Abbasi M., Ebrahimi N.G., Nadali M., Esfahani M.K. Elongational viscosity of LDPE with various structures: employing a new evolution equation in MSF theory. Rheol. Acta, 2012, vol. 51, pp. 163-177. https://doi.org/10.1007/s00397-011-0572-z">https://doi.org/10.1007/s00397-011-0572-z

Pokrovskiy V.N. Statisticheskaya mekhanika razbavlennykh suspenziy [Statistical mechanics of diluted suspensions]. Moscow, Nauka, 1978. 136 p.

Pokrovskii V.N., Pyshnograi G.V. Simple forms of determining equation of concentrated polymer solutions and melts as a consequence of molecular viscoelasticity theory. Fluid Dyn., 1991, vol. 26, pp. 58-64. https://doi.org/10.1007/BF01050113">https://doi.org/10.1007/BF01050113

Pyshnograi G.V., Pokrovskii V.N., Yanovskii Yu.G., Karnet Yu.N., Obraztsov I.F. Constitutive equation of nonlinear viscoelastic (polymeric) media in zero approximation with respect to molecular-theory parameters and the consequences of shear and tension. Physics – Doklady, 1994, vol. 39, pp. 889-892.

Pyshnograi G.V., Altukhov Yu.A. Microstructural approach in the theory of flow of linear polymers and related effects. Polym. Sci. A, 1996, vol. 38, pp. 766-774.

Pyshnograi G.V., Gusev A.S., Pokrovskii V.N. Constitutive equations for weakly entangled linear polymers. J. Non-Newton Fluid Mech., 2009, vol. 164, pp. 17-28. https://doi.org/10.1016/j.jnnfm.2009.07.003">https://doi.org/10.1016/j.jnnfm.2009.07.003

Koshelev K.B., Pyshnograi G.V., Tolstykh M.Yu. Modeling of the three-dimensional flow of polymer melt in a convergent channel of rectangular cross-section. Fluid Dyn., 2015, vol. 50, p. 315-321. https://doi.org/10.1134/S0015462815030011">https://doi.org/10.1134/S0015462815030011

Al Joda H.N.A., Afonin G.L., Merzlikina D.A., Philip P., Pivokonsky R., Pyshnogray G.V. Modification of the internal friction law in mesoscopic theory flowable polymer media. MKMK – Mechanics of composite materials and design, 2013, vol. 19, no. 1, pp. 128-140.

Merzlikina D.A., Philip P., Pivokonsky R., Pyshnogray G.V. Multimode rheological model and findings for simple shear and elongation. MKMK – Mechanics of composite materials and design, 2013, vol. 19, no. 2, pp. 254-261.

Merzlikina D.A., Pyshnograi G.V., Pivokonskii R., Filip P. Rheological model for describing viscometric flows of melts of branched polymers. J. Eng. Phys. Thermophy., 2016, vol. 89, pp. 652-659. https://doi.org/10.1007/s10891-016-1423-7">https://doi.org/10.1007/s10891-016-1423-7

Pokrovskii V.N. The mesoscopic theory of polymer dynamics. Springer, 2010. 256 p. https://doi.org/10.1007/978-90-481-2231-8">https://doi.org/10.1007/978-90-481-2231-8

Published

2020-03-30

Issue

Section

Articles

How to Cite

Makarova, M. A., Malygina, A. S., Pyshnograi, G. V., & Rudakov, G. O. (2020). Modeling of rheological properties of polyethylene melts during uniaxial stretching. Computational Continuum Mechanics, 13(1), 73-82. https://doi.org/10.7242/1999-6691/2020.13.1.6