Setting up the mathematical model of gas fuel combustion taking into account computational domain geometry refinement

Authors

  • Yuliya Aleksandrovna Mitrofanova Perm National Research Polytechnic Unversity; JSC «UEC-Aviadvigatel»
  • Renat Azgarovich Zagitov Perm National Research Polytechnic Unversity; JSC «UEC-Aviadvigatel»
  • Petr Valentinovich Trusov Perm National Research Polytechnic Unversity

DOI:

https://doi.org/10.7242/1999-6691/2020.13.1.5

Keywords:

gas fuel combustion, gas-turbine engine, RANS, SST turbulence model, combined EDM/FRC model, computational experiments, computational domain geometry refinemen

Abstract

The problem of gaseous fuel combustion in a land-used gas turbine engine combustion chamber was formulated, and the results of the numerical solution were described. The paper assumes that the gas-air mixture is a single-phase, multicomponent and reactive flow. The Reynolds averaging approach to the Navier-Stokes equations was used to describe the turbulent flow in the combustion chamber. The SST model of turbulence was used to close the averaged system .A combined EDM/FRC combustion model was used to determine the rate of formation of mixture components. A technique was proposed for setting up the mathematical model taking into account three parameters: the turbulent Prandtl and Schmidt numbers and the coefficient limiting the burning rate. Based on a comparison of the results of preliminary calculations and experiments, it was suggested that the difference in these data is due to technological deviations and the application of a heat-protective coating to the walls of the flame tube. The geometry of the computational domain was changed based on the airflow coefficient obtained in the aerodynamic tests. The setting up of the mathematical model was carried out both on the initial and on the refined geometry. The verification of the mathematical model was carried out using the results of experiments on three structural variants of the flame tube. The results of calculations carried out with the use of refined data showed that a change in geometry made it possible to more correctly describe combustion in a turbulent flow: the theoretical results on the average non-uniformity obtained on the refined geometry of the studied region practically coincide with the experimental data. Due to updating the geometry of the computational domain, it was possible to establish the location and magnitude of the maximum non-uniformity. Using the results obtained in this work, a mathematical model was developed to describe the combustion of gaseous fuel in the combustion chamber of a gas turbine engine. The proposed model can be used to further optimize the design of the combustion chamber.

Downloads

Download data is not yet available.

References

Inozemtsev A.A., Nikhamkin M.A., Sandratskiy V.L. Osnovy konstruirovaniya aviatsionnykh dvigateley i energeticheskikh ustanovok. T. 2. Kompressory. Kamery sgoraniya. Forsazhnyye kamery. Turbiny. Vykhodnyye ustroystva [Designing bases of aircraft engines and power plants. Vol. 2. Compressors. Combustion Chambers. Afterburner. Turbine. Exhaust arrangement]. Moscow, Mashinostroyeniye, 2008. 367 p.

Zyrianov A.V., Senyushkin N.S., Kharitonov V.F. Development of diagnostics method for gas turbine combustors on the base of mathematical modeling of their operation. Vestnik UGATU – Vestnik USATU, 2012, vol. 16, no. 2(47), pp. 98‑105.

Korneyev V.N. Teoriya gazoturbinnykh dvigateley [The gas turbine engines theory]. Moscow, Izdatelskiye resheniya, 2019. 154 p.

Chigrin V.S., Belova S.E. Konstruktsiya kamer sgoraniya gazoturbinnykh dvigateley [The design of gas turbine engines combustion chambers]. Rybinsk, RGATA. 2004. 25 p.

Pugach K.S. Computer simulation for trimming exit temperature profile from low emis-sion combustor. Komp’yuternyye issledovaniya i modelirovaniye – Computer Research and Modeling, 2014, vol. 6, no. 6, pp. 901-909.

Orlov M., Zubrilin I., Matveev S., Tsybizov Yu. Operational development of exit temperature profile of multiburner combustion chamber with using of computational fluid dynamics. Izv. Samarskogo nauchnogo tsentra RAN – Izvestia RAS SamSC, 2013, vol. 15, no. 6(4), pp. 905-910.

Lefebvre A.H. Gas turbine combustion. McGraw-Hill Book company, 1985.

Kofman V.M. Research of the influence of the gas flow temperature field irregularity in the gas turbine engine combustion chamber outlet on the integral characteristics of the flow and its results averaging. Vestnik UGATU – Vestnik USATU, 2012, vol. 16,  no. 1(46),  pp. 10-23.  http://journal.ugatu.ac.ru/index.php/Vestnik/article/view/725">http://journal.ugatu.ac.ru/index.php/Vestnik/article/view/725 (accessed April 06, 2020)

Loytsyanskiy L.G. Mekhanika zhidkosti i gaza [The fluid mechanics]. Moscow, Leningrad, Gostekhizdat, 1950. 676 p. L.G.

Rozhdestvenskiy B.L., Yanenko N.N. Sistemy kvazilineynykh uravneniy i ikh ppilozheniya k gazovoy dinamike [Quasilinear  equations systems and their applications to gas dynamics]. Moscow, Nauka, 1968. 686 p.

Boltzmann L. Vorlesungen über Gastheorie [Lectures on gas theory]. Leipzig, Verlag J.A. Barth, 1896.

Molchanov A.M. Matematicheskoye modelirovaniye giperzvukovykh gomogennykh i geterogennykh neravnovesnykh techeniy pri nalichii slozhnogo radiatsionno-konvektivnogo teploobmena [Mathematical modelling of hypersound homogeneous and heterogeneous nonequilibrium currents at presence complex radiation-convective heat exchange]. Moscow, Izd-vo MAI, 2017. 160 p.

Garnier E., Adams N., Sagaut P. Large eddy simulation for compressible flows. Springer, 2009. 276 p. https://doi.org/10.1007/978-90-481-2819-8">https://doi.org/10.1007/978-90-481-2819-8

Toro E.F. Riemann solvers and numerical methods for fluid dynamics. Springer, 1999. 624 p. https://doi.org/10.1007/978-3-662-03915-1">https://doi.org/10.1007/978-3-662-03915-1

Prandtl L., Tietjens O. Hydro- and aeromechanic. B. 2. Bewegung Reibender Flüssigkeiten und technische Anwendungen [Hydro- and aeromechanics. Vol. 2. Movement of liquids with friction and technical appendices]. Springer, 1931.

Landau L.D., Lifshits E.M. Teoreticheskaya fizika. T. VI. Gidrodinamika [Theoretical physics. Vol. VI. Hydrodynamics]. Moscow, Gl. red. fiz.-mat. lit., 1988. 736 p.

.Fabrikant N.Ya. Aerodinamika. Ch. 1 [Aerodynamics. Vol. 1]. Moscow, Leningrad, izd-vo tekhn.-teoret. lit., 1949. 624 p.

Wilcox D.C. 24th Aerospace Sciences Meeting. U.S.A., Reno, NV, January 6-9, 1986Pp. 15-17. https://doi.org/10.2514/6.1986-29">https://doi.org/10.2514/6.1986-29

Menter F.R. Proc. of the 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference. U.S.A., Orlando, FL, July 6-9, 1993. Pp. 1993-2906https://doi.org/10.2514/6.1993-2906">https://doi.org/10.2514/6.1993-2906

Wilcox D.C. Turbulence Modeling for CFD. DCW Industries, Inc., 1994. 460 p.

Reynolds O. Papers on mechanical and physical subjects. Cambridge: At the University Press, 1901. Vol. II. 227 p.

Kutsenko Yu.G. Chislennyye metody otsenki emissionnykh kharakteristik kamer sgoraniya gazoturbinnykh dvigateley [Numerical methods of an issue characteristics estimation GTE combustion chamber]. Ekaterinburg-Perm, UrO RAN, 2006. 140 p.

Magnussen B.F., Hjertager B.H. On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Symposium (International) on Combustion, 1977, vol. 16, pp. 719-729. https://doi.org/10.1016/S0082-0784(77)80366-4">https://doi.org/10.1016/S0082-0784(77)80366-4

Curran H.J., Gaffuri P., Pitz W.J., Westbrook C.K. A comprehensive modelling study of n-heptane oxidation. Combust. Flame, 1998, vol. 114, pp. 149-177. https://doi.org/10.1016/S0010-2180(97)00282-4">https://doi.org/10.1016/S0010-2180(97)00282-4

Baevich V.Ya. Detailed kinetic mechanism of the combustion of homogeneous gaseous mixtures with participation of oxygen-containing oxidants. Russ. Chem. Rev., 1987, vol. 56, no. 5, pp. 411-427. https://doi.org/10.1070/RC1987v056n05ABEH003280">https://doi.org/10.1070/RC1987v056n05ABEH003280

Westbrook C.K, Dryer P.L. Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames. Combust. Sci. Tech., 1981, vol. 27, pp. 31-43. https://doi.org/10.1080/00102208108946970">https://doi.org/10.1080/00102208108946970

Bedarev I.A., Fedorov A.V. Comparative analysis of three mathematical models of hydrogen ignition. Combust. Explos. Shock Waves, 2006, vol. 42, pp. 19-26. https://doi.org/10.1007/s10573-006-0002-1">https://doi.org/10.1007/s10573-006-0002-1

ANSYS 17.2 Help. URL: www.cadfem-cis.ru (accessed 06 April 2020)

Gritsenko E.A., Danil’chenko V.P., Lukachev S.V., Reznik V.E., Tsybizov Yu.I. Konvertirovaniye aviatsionnykh GTD v gazoturbinnyye ustanovki nazemnogo primeneniya [Conversion of aircraft gas turbine engines to gas turbine installations for ground use]. Samara, SNTs RAN, 2004. 266 p.

Sokolov V.D., Yagudin S.V. Koeffitsiyent raskhoda osesimmetrichnykh suzhayushchikhsya sopl s proizvol’nym konturom [Flow coefficient of axisymmetric tapering nozzles with an arbitrary contour]. Uchenyye zapiski TsAGI, 1975, vol. 5, no. 1, pp. 117-121.

Godunov S.K. Raznostnyy metod chislennogo rascheta razryvnykh resheniy uravneniy gidrodinamiki [The difference method for the numerical calculation of discontinuous solutions of the equations of hydrodynamics]. Matem. sb., 1959, vol. 47(89), no. 3, pp. 271-306.

Published

2020-03-30

Issue

Section

Articles

How to Cite

Mitrofanova, Y. A., Zagitov, R. A., & Trusov, P. V. (2020). Setting up the mathematical model of gas fuel combustion taking into account computational domain geometry refinement. Computational Continuum Mechanics, 13(1), 60-72. https://doi.org/10.7242/1999-6691/2020.13.1.5