Investigation of the thermal conductivity of composite materials with a spherical filler

Authors

  • Anton Alekseyevich Chernykh Lipetsk State Technical University
  • Anatoliy Mikhaylovich Shmyrin Lipetsk State Technical University

DOI:

https://doi.org/10.7242/1999-6691/2020.13.1.3

Keywords:

composite, inclusions, thermal resistance, thermal conductivity, thermal flux, computational experiments

Abstract

In the light of the disadvantages of existing methods for determining the thermal conductivity of composite materials, the major practical issue is the need for creating more advanced calculation methods that take into account the geometry of the dispersed inclusions and their properties, i.e., those capable of evaluating the heat-conducting parameters of the composite with consideration of the properties of its components and their relative positions. In this paper, the analytical formulas, containing the ratio of the thermal conductivity coefficients of the base material and the filler, are derived for calculating the thermal conductivity of composite. The proposed model uses averaging of parameters at the "matrix-dispersed inclusion" phase boundary. We consider several well-known models developed by domestic and foreign researchers in recent years, which allows us to calculate the coefficient of thermal conductivity of such composites. The results of comparison of these models with the analytical dependence obtained in this paper are presented, and its applicability intervals are specified for different ratios of the inclusion thermal conductivity coefficient and the matrix material. The main goal is to fill the lack of information on thermal conductivity of spherical filler composites. The model considered in this paper is based on a change in the thermal resistance at the phase boundary. Since most materials used in industry contain inclusions with different geometric characteristics, then it is necessary to use the equivalent volume method - the reduction of various geometric inclusions to a given spherical one - which makes it possible to determine a change in the thermal conductivity coefficient for different physical and geometric values of the matrix material and filler. Various dependences of the change in the thermal conductivity coefficient of composite materials on the volume content of the spherical inclusion are compared with the numerical and experimental results. The analytical dependence given in this paper is consistent with the experimental and numerical results for relatively small values of the thermal conductivity coefficient and the inclusion diameter.

Downloads

Download data is not yet available.

References

Maxwell J.C. A treatise on electricity and magnetism. Vol. 1. Oxford University Press, 1873. 500 p.

 Meredith R.E., Tobias C.W. Conductivities in emulsions. J. Electrochem. Soc., 1961, vol. 108, pp. 286-290. https://doi.org/10.1149/1.2428064">https://doi.org/10.1149/1.2428064

Dul’nev G.N., Zarichnyak Yu.P. Teploprovodnost’ smesey i kompozitsionnykh materialov. Spravochnaya kniga [Thermal conductivity of mixtures and composite materials. Reference book]. Leningrad, Energiya, 1974. 264 p.

Epov M.I., Terekhov V.I., Nizovtsev M.I., Shurina E.L., Itkina N.B., Ukolov E.S. Effective thermal conductivity of dispersed materials with contrast inclusions. High Temp., 2015, vol. 53, pp. 45-50. https://doi.org/10.1134/S0018151X15010046">https://doi.org/10.1134/S0018151X15010046

Mikheev V.A., Sulaberidze V.Sh., Mushenko V.D. Investigation of thermal conductivity of composite materials based on silicone with fillers. Izv. vuzov. Priborostroyeniye – Journal of Instrument Engineering, 2015, vol. 58, no. 7, pp. 167-172. https://doi.org/10.17586/0021-3454-2015-58-7-571-575">https://doi.org/10.17586/0021-3454-2015-58-7-571-575

Sharapov A.I., Korshikov V.D., Chernykh A.A., Peshkova A.V. A method of researching the thermal conductivity coefficient of dispersion composite materials. Journal of Chemical Technology and Metallurgy, 2020, vol. 55, iss. 1, pp. 148‑155. https://dl.uctm.edu/journal/web/j2020-1">https://dl.uctm.edu/journal/web/j2020-1

Zarubin V.S., Kuvyrkin G.N., Savel’yeva I.Yu. Effektivnaya teploprovodnost’ kompozita v sluchaye otkloneniy formy vklyucheniy ot sharovoy [The effective thermal conductivity of the composite in the case of deviations of the shape of the inclusions from the ball]. Mat. modelir. i chisl. metody – Mathematical Modeling and Computational Methods, 2014, no. 4, pp. 3-17.

Ngo I.-L., Jeon S., Byon C. Thermal conductivity of transparent and flexible polymers containing fillers: A literature review. Int. J. Heat Mass Tran., 2016, vol. 98, pp. 219-226. https://doi.org/10.1016/j.ijheatmasstransfer.2016.02.082">https://doi.org/10.1016/j.ijheatmasstransfer.2016.02.082

Zarubin V.S., Kuvyrkin G.N. Two-sided estimates for thermal resistance of an inhomogeneous solid body. High Temp., 2013, vol. 51, pp. 519-525. https://doi.org/10.1134/S0018151X1304024X">https://doi.org/10.1134/S0018151X1304024X

Alshaer W.G., Nada S.A., Rady M.A., Del Barrio E.P., Sommier A. Thermal management of electronic devices using carbon foam and PCM/nano-composite.Int. J. Therm. Sci., 2015, vol. 89, pp. 79-86. https://doi.org/10.1016/j.ijthermalsci.2014.10.012">https://doi.org/10.1016/j.ijthermalsci.2014.10.012

Khedari J., Suttisonk B., Pratinthong N., Hirunlabh J.New lightweight composite construction materials with low thermal conductivity. Cement Concr. Compos., 2001, vol. 23, pp. 65-70. https://doi.org/10.1016/S0958-9465(00)00072-X">https://doi.org/10.1016/S0958-9465(00)00072-X

Chen Y.-M., Ting J.-M.Ultra high thermal conductivity polymer composites. Carbon, 2002, vol. 40, pp. 359-362. https://doi.org/10.1016/S0008-6223(01)00112-9">https://doi.org/10.1016/S0008-6223(01)00112-9

Hamilton R.L., Crosser O.K. Thermal conductivity of heterogeneous two-component systems.Ind. Eng. Chem. Fundamen., 1962, vol. 1, no. 3, pp. 187-191. https://doi.org/10.1021/i160003a005">https://doi.org/10.1021/i160003a005

Progelhot R.C., Throne J.L., Ructsch R.R. Methods for predicting the thermal conductivity of composite systems: A review.Polymer Eng. Sci., 1976, vol. 16, pp. 615-625. https://doi.org/10.1002/pen.760160905">https://doi.org/10.1002/pen.760160905

Weinan E., Engquist B. Multiscale modeling and computation.Notices Americ. Math. Soc., 2003, vol. 50, pp. 1062‑1070. http://www.ams.org/notices/200309/fea-engquist.pdf">http://www.ams.org/notices/200309/fea-engquist.pdf

Weinan E., Engquist B., Li X., Ren W., Vanden-Eijnden E. The heterogeneous multiscale method: A review.Commun. Comput. Phys., 2007, vol. 2, no. 3, pp. 367-450.

Sharapov A.I., Chernykh A.A., Yartsev A.G., Peshkova A.V. Distribution of heat flow through a material with a spherical cavity.Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii, 2019, vol. 9, no. 1(30), pp. 49-55.

Zarubin V.S., Kuvyrkin G.N., Saveleva I. Yu. Influence of the mutual arrangement of spherical inclusions on the thermal conductivity of the composite.Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana. Seriya Estestvennyye nauki – Herald of the Bauman Moscow State Technical University. Natural Sciences, 2014, no. 5(56), pp. 94-108.

Zhirov S.G., Koptelov A.A., Milekhin Yu.M.Thermal conductivity of heterogeneous materials Part II. A computational method of thermal conductivity for heterogeneous materials with interpenetrative components. Prikladnaya fizika – Applied physics, 2005, no. 4, pp. 39-44.

Xu Y., Kinugawa J., Yagi K. Development of thermal conductivity prediction system for composites.Mater. Trans., 2003, vol. 44, pp. 629-632. https://doi.org/10.2320/matertrans.44.629">https://doi.org/10.2320/matertrans.44.629

Bensoussan A., Lions J.L., Papanicolau G.Asymptotic analysis for periodic structures. American Mathem. Society, 2011. 392 p.

Bouguerra A., Laurent J.P., Goual M.S., Queneudec M. The measurement of the thermal conductivity of solid aggregates using the transient plane source technique.J. Phys. D: Appl. Phys., 1997, vol. 30, pp. 2900-2904. https://doi.org/10.1088/0022-3727/30/20/018">https://doi.org/10.1088/0022-3727/30/20/018

Vadasz P. Heat conduction in nanofluid suspensions.J. Heat Tran., 2006, vol. 128, pp. 465-477. https://doi.org/10.1115/1.2175149">https://doi.org/10.1115/1.2175149

Published

2020-03-30

Issue

Section

Articles

How to Cite

Chernykh, A. A., & Shmyrin, A. M. (2020). Investigation of the thermal conductivity of composite materials with a spherical filler. Computational Continuum Mechanics, 13(1), 34-43. https://doi.org/10.7242/1999-6691/2020.13.1.3