Seismoacoustic sounding of local inhomogeneities by the method of reflected waves

Authors

  • Yuriy Mikhaylovich Zaslavsky Institute of Applied Physics RAS
  • Vladislav Yur’yevich Zaslavsky Institute of Applied Physics RAS

DOI:

https://doi.org/10.7242/1999-6691/2020.13.1.2

Keywords:

multichannel seismoacoustic diagnostics, vibration sounding of the ground, karst cavity, local heterogeneity, spatial resolution

Abstract

The calculation relations are derived for analyzing the possibility of detecting local inhomogeneities by the method of reflected waves when conducting acoustic investigation of the ground layer. The amplitude value of the total response at the receiving antenna output is represented as a two-dimensional terrain - a function of two arguments: delay time of the back-reflected delay time pulse echo signal and the aperture center displacement during spatial scanning relative to the place of the intended target localization of the inhomogeneity. Based on a graphical representation of the total response of the receiving antenna in the form of a two-dimensional space-time terrain, the feasibility of the proposed method for detecting local inhomogeneities is demonstrated. The illustrations of the results of mathematical and numerical modeling for sensing the environment clearly show that this approach helps in obtaining information about the actual profile or nature of the horizontal spatial distribution of the anomaly. The influence of the duration of the probing pulse and the aperture of the receiving antenna, the size and depth of the local inhomogeneity, as well as the dissipation factor, during the propagation of seismic-acoustic waves on the resolution in probing and remote diagnostics of inhomogeneity parameters is analyzed by mathematical and numerical modeling modeling. The field of application of the developed technique is engineering seismic exploration of karst cavities, breccias, caverns and other types of local inhomogeneities.

Downloads

Download data is not yet available.
Supporting Agencies
Работа выполнена в рамках государственного задания ИПФ РАН (проект 0035-2019-0019).

References

Yaroslavtsev A.G., Bobrov V.Y., Zhikin A.A. Proc. of the 13th Conference and Exhibition Engineering Geophysics 2017. Kislovodsk, Russia, April 24-28, 2017. https://doi.org/10.3997/2214-4609.201700411">https://doi.org/10.3997/2214-4609.201700411

Chernyshov G.S., Duchkov A.A., Serdyukov A.S. Application of wave-equation traveltime inversion for near surface geophysics studies. Interekspo GEO-Sibir’ – Interexpo GEO-Siberia, 2017, vol. 2, no. 4, pp. 90-94.

Shishkina M.A., Fokin I.V., Tikhotskiy S.A. Resolution of cross-well travel-time tomography. Tekhnologii seysmorazvedki – Seismic Technologies, 2015, no. 1, pp. 5-21. https://doi.org/10.18303/1813-4254-2015-1-5-21">https://doi.org/10.18303/1813-4254-2015-1-5-21

Romanov V.V. On the experience of combined application of seismic prospecting and ground penetrating radar for engineering-geological surveys in the territory of Moscow. Inzhenernyye izyskaniya, 2015, no. 5-6, pp. 44-49.

Fokin I.V., Basakina I.M., Kapustyan N.K. Tikhotskii S.A., Schur D.Yu. Application of travel-time seismic tomography for archaeological studies of building foundations and basements. Seism. Instr., 2012, vol. 48, pp. 185-195. https://doi.org/10.3103/S074792391202003X">https://doi.org/10.3103/S074792391202003X

Serdyukov A.S., Yablokov A.V. Surface waves multichanel analysis using time-spatial power spectrum focusing. Interekspo GEO-Sibir’ – Interexpo GEO-Siberia, 2017, vol. 2, no. 4, pp. 53-57.

Davydov V.A. Detection of anthropogenic underground cavities by means of geophysical methods. Inzhenernyye izyskaniya, 2013, no. 7, pp. 52-57.

Chugayev A.V. Prakticheskiye aspekty izucheniya poverkhnostnykh voln, registriruyemykh pri maloglubinnykh seysmorazvedochnykh issledovaniyakh MOGT [Practical aspects of the study of surface waves recorded during shallow seismic surveys of the MOGT] // Strategiya i protsessy osvoyeniya georesursov [Strategy and processes for the development of geo-resources]. Perm’, Izd-vo Gorn. in-ta UrO RAN, 2004. Pp. 172-174.

Park C.B., Miller R.D., Xia J. Multichannel analysis of surface waves. Geophysics, 1999, vol. 64, no. 3, pp. 800-808. https://doi.org/10.1190/1.1444590">https://doi.org/10.1190/1.1444590

Kovin O.N., Anderson N., Titimakorn T. 2-D mnogokanal’nyy analiz poverkhnostnykh voln – effektivnyy metod izucheniya skorostey verkhney chasti razreza [2-D multichannel analysis of surface waves - an effective method for studying the velocities of the upper part of the section]. Gornoye echo, 2005, no.3 (21), pp. 29-35

Meshbey V.I. Metodika mnogokratnykh perekrytiy v seysmorazvedke [Multiple overlap technique in seismic exploration]. Moscow, Nedra,1985. 264 p.

Gol’din S.V. Teoriya interpretatsii v seysmorazvedke i seysmologii [Interpretation theory in seismic and seismology]. Novosibirsk, INGG SO RAN, 2011. 357 p.

Boganik G.N., Gurvich I.I. Seysmorazvedka [Seismic exploration]. Tver’, AIS, 2006. 774 p.

Urupov A.K. Osnovy trekhmernoy seysmorazvedki [Basic 3D seismic]. Moscow, FGUP Izd-vo «Neft’ i gaz» RGU nefti i gaza im. I.M. Gubkina, 2004. 584 p.

Kondrat’yev O.K. Razreshayushchaya sposobnost’ seysmorazvedki MOV-OGT [The resolution of seismic exploration MOV-OGT]. Geofizika – Russian Geophysics, 2006, no. 2, pp. 3-12.

Dwight H.B. Tables of integrals and other mathematical data. N.Y., The MacMillan Company, 1961. 288 p.

Landsberg G.S. Optika [Optics]. Moscow, Nauka, 1976. 928 p.

Published

2020-03-30

Issue

Section

Articles

How to Cite

Zaslavsky, Y. M., & Zaslavsky, V. Y. (2020). Seismoacoustic sounding of local inhomogeneities by the method of reflected waves. Computational Continuum Mechanics, 13(1), 23-33. https://doi.org/10.7242/1999-6691/2020.13.1.2