A refined model of viscoelastic-plastic deformation of flexible plates with spatial reinforcement structures

Authors

  • Andrey Petrovich Yankovskii Khristianovich Institute of Theoretical and Applied Mechanics SB RAS

DOI:

https://doi.org/10.7242/1999-6691/2020.13.1.1

Keywords:

flexible plates, spatial reinforcement, planar-cross reinforcement, viscoelastic-plastic deformation, Reddy theory, refined theory of bending, geometric nonlinearity, explosive loads, numerical “cross-type” scheme

Abstract

A refined model of viscoelastic-plastic deformation of flexible plates with spatial reinforcement structures has been developed. Strains of the composition materials are assumed to be small and decomposed into plastic and viscoelastic components. Instant plastic deformation of these materials is described by the flow theory with isotropic hardening. Viscoelastic deformation obeys the equations of a linear model of a five-constant body. The geometric nonlinearity of the problem is taken into account in the Karman approximation. The possible weak resistance of composite plates to lateral shear is modeled in the framework of a refined theory of bending. This allows one to determine the displacements of plate points and the stress-strain state in the components of the composition with varying degrees of accuracy. In a first approximation, from the obtained equations and boundary conditions, we obtain relations corresponding to the traditional nonclassical Reddy theory. A numerical solution to the formulated initial-boundary-value problem is sought according to an explicit “cross-type” scheme The viscoelastic-plastic dynamic deformation of rectangular, relatively thin fiberglass plates under the influence of an explosive type load is investigated. The plates have a traditional plane-cross (orthogonal) or spatial reinforcement structure. It is shown that even in the case of relatively thin composite plates the Reddy theory is unacceptable for adequate calculations of their dynamic viscoelastic-plastic deformation. It has been demonstrated that the magnitude and shape of the residual deflections depend not only on the reinforcement structure, but also on the magnitude of the viscoelastic characteristics of the materials of the composition components. It was found that, after dynamic inelastic deformation, the composite plate can have a corrugated residual shape with folds oriented in the longitudinal direction. It is shown that even in the case of a relatively thin plate, replacing the planar-cross reinforcement structure with a spatial structure can significantly reduce the amount of residual deflection and the intensity of residual deformation in the binder material and some fiber families. For relatively thick plates, the effect of such a replacement of the reinforcing structures manifests itself much more.

Downloads

Download data is not yet available.
Supporting Agencies
Работа выполнена в рамках Программы фундаментальных научных исследований государственных академий наук на 2017-2020 годы (проект 23.4.1 - Механика деформирования и разрушения материалов, сред при механических нагрузках, воздействии физических полей и химически активных сред).

References

Mouritz A.P., Gellert E., Burchill P., Challis K. Review of  advanced composite structures for naval ships and submarines. Compos. Struct., 2001, vol. 53, pp. 21-42. http://dx.doi.org/10.1016/S0263-8223(00)00175-6">http://dx.doi.org/10.1016/S0263-8223(00)00175-6

Soutis C. Fibre reinforced composites in aircraft construction. Progr. Aero. Sci., 2005, vol. 41, pp. 143-151. https://doi.org/10.1016/j.paerosci.2005.02.004">https://doi.org/10.1016/j.paerosci.2005.02.004

Gibson R.F. Principles of composite material mechanics / 4th ed. CRC Press, 2016. 700 p. https://doi.org/10.1201/b19626">https://doi.org/10.1201/b19626

Gill S.K., Gupta M., Satsangi P.S. Prediction of cutting forces in machining of unidirectional glass fiber reinforced plastics composite. Front. Mech. Eng., 2013, vol. 8, pp. 187-200. https://doi.org/10.1007/s11465-013-0262-x">https://doi.org/10.1007/s11465-013-0262-x

Solomonov Yu.S., Georgiyevskiy V.P., Nedbay A.Ya., Andryushin V.A. Prikladnyye zadachi mekhaniki kompozitnykh tsilindricheskikh obolochek [Applied problems of mechanics of composite cylindrical shells]. Moscow, Fizmatlit, 2014, 408 p.

Vasiliev V.V., Morozov E. Advanced mechanics of composite materials and structural elements. Elsever, 2013. 832 p. https://doi.org/10.1016/C2011-0-07135-1">https://doi.org/10.1016/C2011-0-07135-1

Kazanci Z. Dynamic response of composite sandwich plates subjected to time-dependent pressure pulses. Int. J. Non Lin. Mech., 2011, vol. 46, pp. 807-817. https://doi.org/10.1016/j.ijnonlinmec.2011.03.011">https://doi.org/10.1016/j.ijnonlinmec.2011.03.011

Morinière F.D., Alderliesten R.C., Benedictus R. Modelling of impact damage and dynamics in fibre-metal laminates – A review. Int. J. Impact Eng., 2014, vol. 67, pp. 27-38. https://doi.org/10.1016/j.ijimpeng.2014.01.004">https://doi.org/10.1016/j.ijimpeng.2014.01.004

Qatu M.S., Sullivan R.W., Wang W. Recent research advances on the dynamic analysis of composite shells: 2000–2009. Compos. Struct., 2010, vol. 93, pp. 14-31. https://doi.org/10.1016/j.compstruct.2010.05.014">https://doi.org/10.1016/j.compstruct.2010.05.014

Reddy J.N. Mechanics of laminated composite plates and shells: Theory and analysis / 2nd Ed. CRC Press, 2004. 831 p.

Tarnopol’skiy Yu.M., Zhigun I.G., Polyakov V.A. Prostranstvenno-armirovannyye kompozitsionnyye materialy: Spravochnik [Spatially reinforced composite materials: Reference Book]. Moscow: Mashinostroyeniye, 1987, 224 p.

Zhigun I.G., Dushin M.I., Polyakov V.A., Yakushin V.A. Composites reinforced with a system of three straight mutually orthogonal fibers. 2. Experimental study. Polymer Mechanics, 1973, vol. 9, pp. 895-900. https://doi.org/10.1007/BF00856974">https://doi.org/10.1007/BF00856974

Mohamed M.H., Bogdanovich A.E., Dickinson L.C., Singletary J.N., Lienhart R.R. A new generation of 3D woven fabric performs and composites. SAMPE J., 2001, vol. 37, no. 3, pp. 3-17.

Schuster J., Heider D., Sharp K., Glowania M. Measuring and modeling the thermal conductivities of three-dimensionally woven fabric composites. Mech. Compos. Mater., 2009, vol. 45, pp. 165-174. https://doi.org/10.1007/s11029-009-9072-y">https://doi.org/10.1007/s11029-009-9072-y

Tarnopol'skii Yu.M., Polyakov V.A., Zhigun I.G. Composite materials reinforced with a system of three straight, mutually orthogonal fibers. I. Calculation of the elastic characteristics. Polymer Mechanics, 1973, vol. 9, pp. 754-759. https://doi.org/10.1007/BF00856271">https://doi.org/10.1007/BF00856271

Kregers A.F., Teters G.A. Strukturnaya model’ deformirovaniya anizotropnykh, prostranstvenno armirovannykh kompozitov [Structural model of deformation of anisotropic, spatially reinforced composites]. Mekhanika kompozitnykh materialov – Mechanics of Composite Materials, 1982, no. 1, pp. 14-22.

Yankovskii A.P. Determination of the thermoelastic characteristics of spatially reinforced fibrous media in the case of general anisotropy of their components. 1. Structural model. Mech. Compos. Mater., 2010, vol. 46, no. 5, pp. 451-460. https://doi.org/10.1007/s11029-010-9162-x">https://doi.org/10.1007/s11029-010-9162-x

Yankovskii A.P. Elastic-plastic deformation of flexible plates with spatial reinforcement structures. J. Appl. Mech. Tech. Phys., 2018, vol. 59, pp. 1058-1066. https://doi.org/10.1134/S0021894418060111">https://doi.org/10.1134/S0021894418060111

Yankovskii A.P. Modelirovanie vyazkouprugoplaticheskogo deformirovania gibkikh armirovannykh plastin s uchyetom slabogo soprotivlenia poperechnomu sdvigu [Modelling the viscoelastic-plastic deformation of flexible reinforced plates with account of weak resistance to transverse shear]. Vychisl. mekh. splosh. sred – Computational Continuum Mechanics, 2019, vol. 12, no. 1, pp. 80-97. https://doi.org/10.7242/1999-6691/2019.12.1.8

Paimushin V.N., Firsov V.A., Gyunal I., Egorov A.G. Theoretical-experimental method for determining the parameters of damping based on the study of damped flexural vibrations of test specimens. 1. Experımental basıs. Mech. Compos. Mater., 2014, vol. 50, pp. 127-136. https://doi.org/10.1007/s11029-014-9400-8">https://doi.org/10.1007/s11029-014-9400-8

Bogdanovich A.E. Nelineynyye zadachi dinamiki tsilindricheskikh kompozitnykh obolochek [Nonlinear problems of the dynamics of cylindrical composite shells]. Riga, Zinatne, 1987. 295 p.

Abrosimov N.A., Bazhenov V.G. Nelineynyye zadachi dinamiki kompozitnykh konstruktsiy [Nonlinear problems of dynamics composites designs]. Nizhniy Novgorod: Nizhniy Novgorod State University, 2002. 400 p.

Reissner E. The effect of transverse-shear deformation on the bending of elastic plates. J. Appl. Mech., 1945, vol. 12, no. 2, pp. 69-77.

Mindlin R.D. Thickness-shear and flexural vibrations of crystal plates. J. Appl. Phys., 1951, vol. 22, no. 3, pp. 316-323.

Andreev A. Uprugost’ i termouprugost’ sloistykh kompozitnykh obolochek. Matematicheskaya model’ i nekotoryye aspekty chislennogo analiza [Elasticity and thermo-elasticity layered composite shells. Mathematical model and some aspects of the numerical analysis]. Saarbrucken, Deutschland: Palmarium Academic Publishing, 2013. 93 p.

Kulikov G.M.               Thermoelasticity of flexible multilayer anisotropic shells. Mech. Solids, 1994, vol. 29, no. 2, pp. 27-35.

Whitney J.M., Sun C.T. A higher order theory for extensional motion of laminated composites. J. Sound Vib., 1973, vol. 30, pp. 85-97. https://doi.org/10.1016/S0022-460X(73)80052-5">https://doi.org/10.1016/S0022-460X(73)80052-5

Pikul′ V.V. Mekhanika obolochek [Mechanics of shells]. Vladivostok, Dal′nauka, 2009. 535 p.

Yankovskii A.P. Modelirovaniye uprugoplasticheskogo deformirovaniya gibkikh pologikh obolochek s prostranstvennymi strukturami armirovaniya [Modeling of elastoplastic deformation of flexible shallow shells with spatial reinforcement structures]. Vychisl. mekh. splosh. sred – Computational Continuum Mechanics, 2018, vol. 11, no. 3, pp. 335-354. http://dx.doi.org/10.7242/1999-6691/2018.11.3.25">http://dx.doi.org/10.7242/1999-6691/2018.11.3.25

Ivanov G.V., Volchkov Yu.M., Bogul’skiy I.O., Anisimov S.A., Kurguzov V.D. Chislennoye resheniye dinamicheskikh zadach uprugoplasticheskogo deformirovaniya tverdykh tel [Numerical solution of dynamic problems of elastoplastic deformation of solids]. Novosibirsk: Siberian university, 2002. 352 p.

Houlston R., DesRochers C.G. Nonlinear structural response of ship panels subjected to air blast loading. Comput. Struct., 1987, vol. 26, no. 1-2, pp. 1-15. https://doi.org/10.1016/0045-7949(87)90232-X">https://doi.org/10.1016/0045-7949(87)90232-X

Zeinkiewicz O.C., Taylor R.L. The finite element method. Butterworth-Heinemann, 2000. Vol. 1. The basis. 707 p.

Flugge S. (ed.) Handbuch der Physik. Band VI: Elastizitat und Plastizitat [Handbook of Physics. Vol. 6: Elasticity and Plasticity]. Springer-Verlag, 1958. 642 p. https://doi.org/10.1007/978-3-662-43081-1

Kolarov D., Baltov A., Boncheva N. Mekhanika plasticheskikh sred [Mechanics of plastic mediums]. Moscow, Mir, 1979. 302 p.

Kachanov L.M. Osnovy teorii plastichnosti [Bases of the theory of plasticity]. Moscow, Nauka, 1969. 420 p.

Naghdi P.M., Murch S.A. On the mechanical behavior of viscoelastic/plastic solids. J. Appl. Mech., 1963, vol. 30, no. 3, pp. 321-328. https://doi.org/10.1115/1.3636556">https://doi.org/10.1115/1.3636556

Paimushin V.N., Firsov V.A., Gyunal I., Egorov A.G., Kayumov R.A. Theoretical-experimental method for determining the parameters of damping based on the study of damped flexural vibrations of test specimens. 3. Identification of the characteristics of internal damping. Mech. Compos. Mater., 2014, vol. 50, pp. 633-646. https://doi.org/10.1007/s11029-014-9451-x">https://doi.org/10.1007/s11029-014-9451-x

Rabotnov Yu.N. Polzuchest' elementov konstruktsiy [Creep of structural elements] / 3th ed. Moscow, LENAND, 2019, 752 p.

Khazhinskiy G.M. Modeli deformirovaniya i razrusheniya metallov [Model of deformation and fracture of metals]. Moscow, Nauchnyy mir, 2011. 231 p.

Malmeyster A.K., Tamuzh V.P., Teters G.A. Soprotivleniye zhestkikh polimernykh materialov [Resistance of rigid polymeric materials]. Riga, Zinatne, 1972, 498 p.

Karpinos D.M. (ed.) Kompozitsionnyye materialy. Spravochnik [Composite materials. Reference Book]. Kiev: Naukova dumka, 1985. 592 p.

Lubin G. (ed.) Handbook of composites. New York: Van Nostrand Reinhold Company Inc., 1982. 786 p.

Published

2020-03-30

Issue

Section

Articles

How to Cite

Yankovskii, A. P. (2020). A refined model of viscoelastic-plastic deformation of flexible plates with spatial reinforcement structures. Computational Continuum Mechanics, 13(1), 5-22. https://doi.org/10.7242/1999-6691/2020.13.1.1