Parametric analisys of interaction between angular and translational vibrations of vibration-sensitive systems

Authors

  • Igor’ Nikolayevich Shardakov Institute of Continuous Media Mechanics UB RAS
  • Irina Olegovna Glot Institute of Continuous Media Mechanics UB RAS
  • Aleksey Petrovich Shestakov Institute of Continuous Media Mechanics UB RAS
  • Kirill Valentinovich Sobyanin Institute of Continuous Media Mechanics UB RAS
  • Dmitriy Vital’yevich Gubskiy Institute of Continuous Media Mechanics UB RAS

DOI:

https://doi.org/10.7242/1999-6691/2019.12.4.38

Keywords:

passive vibration isolation, mathematical model, vibration tests, center of stiffness, center of mass, angular vibrations, dampers, stiffness coefficient, energy dissipation coefficient

Abstract

Modern radio-TV complexes, electronic equipment and navigation systems placed on moving objects (aircrafts, ships, cars and others) are subjected to pulse and vibrational mechanical loads, which may distort the device characteristics and even destroy them. Therefore, there is a need to minimize unwanted movements of these devices. The effective way to solve this problem is the organization of passive vibration isolation of a device. This article explores the mechanical vibrations of a block of shock-sensitive electronic devices fixed on a rigid platform of a supporting structure. The block is isolated from the external structure using 4 dampers. The platform is subjected to translational vibrations in three mutually orthogonal directions. As a result, angular oscillations occur in the insulated block. Mathematical modeling of the block response to external disturbances is carried out in the framework of the classical theory of rigid body dynamics. A series of numerical experiments was performed to simulate the response of the insulated block to an external periodic action. In the simulation, the stiffness and energy dissipation coefficients of dampers as well as the positions of the center of mass are varied. It is shown that the deviation of the position of the center of mass relative to the center of rigidity, as well as a change in the stiffness and energy dissipation coefficients of dampers within the spread around their mean values causes a significant increase in the angular oscillations of the insulated block.

Downloads

Download data is not yet available.
Supporting Agencies
Работа выполнена при финансовой поддержке Комплексной программы фундаментальных исследований Уральского отделения РАН в рамках проекта № 18-11-1-10 «Исследование колебательных процессов в виброчувствительных приборах и разработка подходов и средств их виброизоляции».

References

Lee J., Okwudire C.E. Reduction of vibrations of passively-isolated ultra-precision manufacturing machines using mode coupling. Precision Engineering, 2016, vol. 43, pp. 164-177. https://doi.org/10.1016/j.precisioneng.2015.07.006">https://doi.org/10.1016/j.precisioneng.2015.07.006

Savage P.G. Strapdown inertial navigation integration algorithm design. Part 1: Attitude algorithms. J. Guid. Contr. Dynam., 1998, vol. 21, pp. 19-28. https://doi.org/10.2514/2.4228">https://doi.org/10.2514/2.4228

Lin Y., Zhang W., Xiong J. Specific force integration algorithm with high accuracy for strapdown inertial navigation system. Aero. Sci. Tech., 2015, vol. 42, pp. 25-30. https://dx.doi.org/10.1016/j.ast.2015.01.001">https://dx.doi.org/10.1016/j.ast.2015.01.001

Zhuravlev V.P., Klimov D.M. https://elibrary.ru/item.asp?id=15293312">Global motion of the celt. Mech. Solid., 2008, vol. 43, pp. 320-327. https://doi.org/10.3103/S0025654408030023">https://doi.org/10.3103/S0025654408030023

Crocker M.J. (ed.) Handbook of noise and vibration control. John Wiley & Sons, 2007. 1584 p.

Bohnert K., Gabus P., Nehring J., Brandle H. Temperature and vibration insensitive fiber-optic current sensor. J. Lightwave Tech., 2002, vol. 20, pp. 267-276. https://dx.doi.org/10.1109/50.983241">https://dx.doi.org/10.1109/50.983241

Wang W., Wang X., Xia J. https://www.sciencedirect.com/science/article/pii/S0030399211001277">The nonreciprocal errors in fiber optic current sensors. Optics & Laser Technology, 2011, vol. 43, pp. 1470-1474. https://dx.doi.org/10.1016/j.optlastec.2011.05.002">https://dx.doi.org/10.1016/j.optlastec.2011.05.002

Zhang Y., Gao Z. Fiber optic gyroscope vibration error due to fiber tail length asymmetry based on elastic-optic effect. Optical Engineering, 2012, vol. 51, 124403. https://doi.org/10.1117/1.OE.51.12.124403">https://doi.org/10.1117/1.OE.51.12.124403

Kurbatov A.M., Kurbatov R.A. The vibration error of the fiber-optic gyroscope rotation rate and methods of its suppression. J. Commun. Technol. Electron., 2013, vol. 58, pp. 840-846. https://doi.org/10.1134/S1064226913070085">https://doi.org/10.1134/S1064226913070085

Il’inskiy V.S. Zashchita REA i pretsizionnogo oborudovaniya ot dinamicheskikh vozdeystviy [Protection of REA and precision equipment from dynamic effects]. Moscow, Radio i svyaz’, 1982. 296 p.

Lee J., Okwudire C.E. Reduction of vibrations of passively-isolated ultra-precision manufacturing machines using mode coupling. Precision Engineering, 2016, vol. 43, pp. 164-177. https://doi.org/10.1016/j.precisioneng.2015.07.006">https://doi.org/10.1016/j.precisioneng.2015.07.006

Verbaan K., van der Meulen S., Steinbuch M. Broadband damping of high-precision motion stages. Mechatronics, 2017, vol. 41, pp. 1-16. https://doi.org/10.1016/j.mechatronics.2016.10.014">https://doi.org/10.1016/j.mechatronics.2016.10.014

Eliseyev S.V., Khomenko A.P., Logunov A.S. Dinamicheskiy sintez v obobshchennykh zadachakh vibrozashchity i vibroizolyatsii tekhnicheskikh ob”yektov [Dynamic synthesis of the generic problems of vibration protection and vibration insulation of echnical objects]. Irkutsk, Izd-vo Irkut. gos. un-ta, 2008. 523 p.

Frolov K.V., Furman F.A. Prikladnaya teoriya vibrozashchitnykh sistem [Applied vibration protection theory]. Moscow, Mashinostroyeniye, 1980. 276 p.

Ganiyev R.F., Kononenko V.O. Kolebaniya tverdykh tel [Oscillations of solids]. Moscow, Nauka, 1976. 432 p.

Published

2019-12-30

Issue

Section

Articles

How to Cite

Shardakov, I. N., Glot, I. O., Shestakov, A. P., Sobyanin, K. V., & Gubskiy, D. V. (2019). Parametric analisys of interaction between angular and translational vibrations of vibration-sensitive systems. Computational Continuum Mechanics, 12(4), 446-454. https://doi.org/10.7242/1999-6691/2019.12.4.38