Economic explicit-implicit schemes for solving multidimensional diffusion-convection problems
DOI:
https://doi.org/10.7242/1999-6691/2019.12.4.37Keywords:
mathematical model, suspension transport, diffusion-convection problem, numerical simulation, difference scheme, explicit-implicit schemeAbstract
This work concerns the development of an efficient parallel algorithm for numerical solution of nonstationary diffusion-convection problems by means of a multiprocessor computer system with distributed memory. Economically explicit-implicit difference schemes and the method of splitting into physical processes are used as a basis. The original problem is replaced by a sequence of one-dimensional and two-dimensional difference problems using complex schemes that approximate the original problem in the general sense. Explicit-implicit difference schemes involve explicit approximation in horizontal directions and implicit approximation with weights in a vertical direction and require less time for solving diffusion-convection problems compared to explicit schemes while maintaining acceptable accuracy of solutions. The algorithm is proposed to find the optimal weight value and it yields the lowest approximation error in the solution of the diffusion-convection problem in the vertical direction for given time grid steps. The three-dimensional model problem of transport of suspensions in the water environment is considered. The model takes into account the following processes: advective transport caused by the movement of the water medium, microturbulent diffusion and gravitational deposition of suspended particles, as well as changes in the geometry of the bottom caused by the deposition of suspended particles or the rise of sediment particles. Application of the parallel algorithm developed for numerical modeling of suspension transport makes it possible to significantly improve the real-time forecast accuracy and the validity of the accepted engineering decisions used in designing the objects of coastal infrastructure.
Downloads
References
SukhinovA.I., ChistyakovA.E., Shishenya A.V., Timofeeva E.F. Predictive modeling of coastal hydrophysical processes in multiple-processor systems based on explicit schemes. Math. Models. Comput. Simul., 2018, vol. 10, pp. 648-658. https://doi.org/10.1134/S2070048218050125">https://doi.org/10.1134/S2070048218050125
Alekseenko Е., Roux B., Sukhinov A., Kotarba R., Fougere D. Nonlinear hydrodynamics in a mediterranean lagoon. Nonlinear Processes in Geophysics, 2013, vol. 20, pp. 189-198. https://doi.10.5194/npg-20-189-2013">https://doi.10.5194/npg-20-189-2013
Sukhinov A.I., Chistyakov A.E., Protsenko E.A. Mathematical modeling of sediment transport in the coastal zone of shallow reservoirs. Math. Models. Comput. Simul., 2014, vol. 6, pp. 351-363. https://doi.org/10.1134/S2070048214040097">https://doi.org/10.1134/S2070048214040097
Sukhinov A.I., Sukhinov A.A. Chapter 29 – Reconstruction of 2001 ecological disaster in the Azov sea on the basis of precise hydrophysics models. Parallel computational fluid dynamics. Multidisciplinary applications, ed. G. Winter, A. Ecer, P. Fox, J. Periaux, N. Satofuka. Elsevier, 2005, 416 p. P. 231-238. https://doi.org/10.1016/B978-044452024-1/50030-0">https://doi.org/10.1016/B978-044452024-1/50030-0
Sukhinov A.А., Sukhinov A.I. Chapter 28 – 3D Model of Diffusion-Advection-Aggregation Suspensions in Water Basins and Its Parallel Realization. Parallel computational fluid dynamics. Multidisciplinary applications, ed. G. Winter, A. Ecer, P. Fox, J. Periaux, N. Satofuka. Elsevier, 2005, 416 p. P. 223-230. https://doi.org/10.1016/B978-044452024-1/50029-4">https://doi.org/10.1016/B978-044452024-1/50029-4
Lyubimova T.P., Lepikhin A.P., Parshakova Ya.N., Tsiberkin K.B. Numerical modeling of liquid-waste infiltration from storage facilities into surrounding groundwater and surface-water bodies. Vychisl. mekh. splosh. sred – Computational Continuum Mechanics, 2015, vol. 8, no. 3, pp. 310-318. https://doi.org/10.7242/1999-6691/2015.8.3.26">https://doi.org/10.7242/1999-6691/2015.8.3.26
Samarskiy A.A., Gulin, A.V. Chislennyye metody matematicheskoy fiziki [Numerical methods of mathematical physics]. Moscow, Nauchnyy mir, 2000. 358 p.
Afanas’eva N.M., Churbanov A.G., Vabishchevich P.N. unconditionally monotone schemes for unsteady convection-diffusion problems. Comput. Meth. Appl. Math., 2013, vol. 13, pp. 185-205. https://doi.org/10.1515/cmam-2013-0002">https://doi.org/10.1515/cmam-2013-0002
http://www.sciencedirect.com/science/article/pii/S1001627915000517">Liu X., http://www.sciencedirect.com/science/article/pii/S1001627915000517">Qi S., http://www.sciencedirect.com/science/article/pii/S1001627915000517">Huang Y., http://www.sciencedirect.com/science/article/pii/S1001627915000517">Chen Y., http://www.sciencedirect.com/science/article/pii/S1001627915000517">Du P. Predictive modeling in sediment transportation across multiple spatial scales in the Jialing River Basin of China. http://www.sciencedirect.com/science/journal/10016279">International Journal of Sediment Research, 2015, vol. 30, pp. 250-255. https://doi.org/10.1016/j.ijsrc.2015.03.013">https://doi.org/10.1016/j.ijsrc.2015.03.013
Sutton T.M., Aviles B.N. Diffusion theory methods for spatial kinetics calculations. Progr. Nucl. Energ., 1996, vol. 30, pp. 119-182. https://doi.org/10.1016/0149-1970(95)00082-U">https://doi.org/10.1016/0149-1970(95)00082-U
Samarskiy A.A. Vabishchevich P.N. Chislennyye metody resheniya zadach konvektsii-diffuzii [Numerical methods for solving convection-diffusion problems]. Moscow, Editorial URSS, 1999. 248 p.
Chetverushkin B.N. Resolution limits of continuous media models and their mathematical formulations. Math. Models. Comput. Simul., 2013, vol. 5, pp. 266-279. https://doi.org/10.1134/S2070048213030034">https://doi.org/10.1134/S2070048213030034
D'Ascenzo N., Saveliev V.I., Chetverushkin B.N. On an algorithm for solving parabolic and elliptic equations. Comput. Math. Math. Phys., 2015, vol. 55, pp. 1290-1297. https://doi.org/10.7868/S0044466915080037">https://doi.org/10.7868/S0044466915080037
Chetverushkin B.N., D’Ascenzo N., Saveliev A.V., Saveliev V.I. A kinetic model for magnetogasdynamics. Math. Models. Comput. Simul., 2017, vol. 9, pp. 544-553. https://doi.org/10.1134/S2070048217050039">https://doi.org/10.1134/S2070048217050039
Hirt C.W., Nichols B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys., 1981, vol. 39, pp. 201-225. https://doi.org/10.1016/0021-9991(81)90145-5">https://doi.org/10.1016/0021-9991(81)90145-5
Sukhinov A.I., Chistyakov A.E., Sidoryakina V.V., Protsenko S.V. A difference scheme with the optimal weight for the diffusion-convection equation. Vychislitel’nyye metody i programmirovaniye – Numerical Methods and Programming, 2019, vol. 20, no. 3, pp. 283-292. https://doi.org/10.26089/NumMet.v20r325">https://doi.org/10.26089/NumMet.v20r325