Modeling of deformation of a plate using piezoelectric elements located on its surface

Authors

  • Nataliya Alekseyevna Iurlova Institute of Continuous Media Mechanics UB RAS
  • Dmitriy Aleksandrovich Oshmarin Institute of Continuous Media Mechanics UB RAS
  • Natal’ya Vital’yevna Sevodina Institute of Continuous Media Mechanics UB RAS
  • Igor’ Evgen’yevich Kovalev Central Aerohydrodynamic Institute named after prof. N.E. Zhukovsky

DOI:

https://doi.org/10.7242/1999-6691/2019.12.4.35

Keywords:

piezoelectric elements, shape control, deformation, bending, torsion, numerical modeling

Abstract

One of the directions of using piezoelectric elements in modern technology is related to their use for controlling the shape of a structure under the influence of operational loads. A problem of change in the shape (geometry) of the structure can be caused, for example, by the need for minimization of displacements in certain regions which are induced by the impact of different types of loads, or vice versa, for maximization of displacements (in order to ensure the stability of the structural shape under operational loads, for example). Due to the presence of the inverse piezoelectric effect in the piezoelectric materials this problem can be solved by applying a predetermined voltage to the electrodes of the piezoelectric element. It is necessary to evaluate the ability of a piezoelectric element to influence the deformations of the object caused by external impact when using them in order to implement various structural mechanical behavior control strategies. This ability depends not only on the properties of a piezoelectric element (dimensions, material properties, location on the structure, etc.) and its structural characteristics (geometry, boundary conditions, material properties, etc.) but also on the operational loads of different kinds which impact a structure. One of the most convenient ways for estimating the influence of different factors on deformation of the structure under the electric voltage applied to piezoelectric elements is to use numerical modeling based on the finite element method. This modeling is performed on the basis of the well-known mathematical formulation of the static problem of electroelasticity. The possibilities of application of piezoelectric elements for changing the shape of an original object are shown by studying the examples where their number and location on a structure are varied. A cantilevered plate was considered as an object of study.

Downloads

Download data is not yet available.
Supporting Agencies
Работа выполнена при финансовой поддержке РФФИ (проект № 19-41-590007_р-а).

References

Koconis D.B., Kollar L.P., Springer G.S. Shape control of composite plates and shells with embedded actuators. II. Desired shape specified. J. Compos. Mater., 1994, vol. 28, pp. 262-285. http://dx.doi.org/10.1177/002199839402800305">http://dx.doi.org/10.1177/002199839402800305

Irschik H. A review on static and dynamic shape control of structures by piezoelectric actuation. Eng. Struct., 2002, vol. 24, pp. 5-11. http://dx.doi.org/10.1016/S0141-0296(01)00081-5">http://dx.doi.org/10.1016/S0141-0296(01)00081-5

Lin C.Y., Crawley E.F., Heeg J. Open and closed loop results of a strain-actuated active aeroelastic wing. J. Aircraft, 1996, vol. 33, pp. 987-994. http://dx.doi.org/10.2514/3.47045">http://dx.doi.org/10.2514/3.47045

Zhang S., Schmidt R., Qin X. Active vibration control of piezoelectric bonded smart structures using PID algorithm. Chin. J. Aeronaut., 2015, vol. 28, pp. 305-313. http://dx.doi.org/10.1016/j.cja.2014.12.005">http://dx.doi.org/10.1016/j.cja.2014.12.005

Ambrose T.P., Houston D.R., Fuhr P.L., Devino E.A., Werner M.P. Shoring systems for construction load monitoring. Smart Mater. Struct., 1994, vol. 3, pp. 26-34. http://dx.doi.org/10.1088/0964-1726/3/1/005">http://dx.doi.org/10.1088/0964-1726/3/1/005

Soh C.K., Tseng K.K.H., Bhalla S., Gupta A. Performance of smart piezoceramic transducers in health monitoring of RC bridge. Smart Mater. Struct., 2000, vol. 9, pp. 533-542. https://doi.org/10.1088/0964-1726/9/4/317">https://doi.org/10.1088/0964-1726/9/4/317

Chaudhry Z., Rogers C.A. Bending and shape control of beams using SMA actuators. J. Intell. Mater. Syst. Struct., 1991, vol. 2, pp. 581-602. http://dx.doi.org/10.1177/1045389X9100200410">http://dx.doi.org/10.1177/1045389X9100200410

Suleman A., Crawford C., Costa A.P. Experimental aeroelastic response of piezoelectric and aileron controlled 3D wing. J. Intell. Mater. Syst. Struct., 2002, vol. 13, pp. 75-83. http://dx.doi.org/10.1177/104538902761402477">http://dx.doi.org/10.1177/104538902761402477

Mabe J., Calkins F., Butler G. Boeing’s variable geometry chevron, morphing aerostructure for jet noise reduction // 47th AIAA/ASME /ASCE/AHS/ASC Struct. Struct. Dyn. Mater. Conf. 14th AIAA/ASME/AHS Adapt. Struct. Conf. 7th, AIAA. 2006. Art. № 2006-2142. http://dx.doi.org/10.2514/">http://dx.doi.org/10.2514/ 6.2006-2142..

Sigmund O., Maute K. Topology optimization approaches. A comparative review. Struct. Multidisc. Optim., 2013, vol. 48, pp. 1031-1055. http://dx.doi.org/10.1007/s00158-013-0978-6">http://dx.doi.org/10.1007/s00158-013-0978-6

Deaton J.D., Grandhi R.V. A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct. Multidisc.Optim., 2014, vol. 49, pp. 1-38. http://dx.doi.org/10.1007/s00158-013-0956-z">http://dx.doi.org/10.1007/s00158-013-0956-z

Remouchamps A., Bruyneel M., Fleury C., Grihon S. Application of a bi-level scheme including topology optimization to the design of an aircraft pylon. Struct. Multidisc. Optim., 2011, vol. 44, pp. 739-750. http://dx.doi.org/10.1007/s00158-011-0682-3">http://dx.doi.org/10.1007/s00158-011-0682-3

Zhu J.H., Zhang W.H., Xia L. Topology optimization in aircraft and aerospace structures design. Arch. Computat. Methods Eng., 2016, vol. 23, pp. 595-622. http://dx.doi.org/10.1007/s11831-015-9151-2">http://dx.doi.org/10.1007/s11831-015-9151-2

Iurlova N.A., Matveenko V.P., Oshmarin D.A., Sevodina N.V., Yurlov M.A. Proc. of the VII European Congress on Computational Methods in Applied Sciences and Engineering. ECCOMAS 2016, Crete Island, Greece, June 5-10, 2016. Vol. 1, pp. 1920-1929

Crawley E.F., Louis J. Use of piezoelectric actuators as elements of intelligent structures. AIAAJ, 1987, vol. 25, pp. 1373‑1385. https://doi.org/10.2514/3.9792">https://doi.org/10.2514/3.9792

Oshmarin D.A., Iurlov M.A., Sevodina N.V., Iurlova N.A. On the optimal location of several peizoelectric elements on the structure surface. IOP Conf. Ser.: Mater. Sci. Eng., 2019, vol. 581, 012013. https://doi.org/10.1088/1757-899X/581/1/012013">https://doi.org/10.1088/1757-899X/581/1/012013

Foutsitzi G.A., Gogos C.G., Hadjigeorgiou E.P., Stavroulakis G.E. Actuator location and voltages optimization for shape control of smart beams using genetic algorithms. Actuators, 2013, vol. 2, pp. 111-128. https://doi.org/10.3390/act2040111">https://doi.org/10.3390/act2040111

Gaudenzi P., Fantini E., Koumousis V.K., Gantes C.J. Genetic algorithm optimization for the active control of a beam by means of PZT actuators. J. Intell. Mater. Syst. Struct., 1998, vol. 9, pp. 291-300. https://doi.org/10.1177/1045389X9800900407">https://doi.org/10.1177/1045389X9800900407

Bruch J.Jr.C., Sloss J.M., Adali S., Sadek I.S. Optimal piezo-actuator locations/lengths and applied voltage for shape control of beams. Smart Mater. Struct., 2000, vol. 9, pp. 205-211. https://doi.org/10.1088/0964-1726/9/2/311">https://doi.org/10.1088/0964-1726/9/2/311

Nguyen Q., Tong L. Shape control of smart composite plate with non-rectangular piezoelectric actuators. Compos. Struct., 2004, vol. 66, pp. 207-214. https://doi.org/10.1016/j.compstruct.2004.04.039">https://doi.org/10.1016/j.compstruct.2004.04.039

Koconis D.B., Kollar L.P., Springer G.S. Shape control of composite plates and shells with embedded actuators. II. Desired shape specified. J. Compos. Mater., 1994, vol. 28, pp. 262-285. https://doi.org/10.1177/002199839402800305">https://doi.org/10.1177/002199839402800305

Barboni R., Mannini A., Fantini E., Gaudenzi P. Optimal placement of PZT actuators for the control of beam dynamics. Smart Mater. Struct., 2000, vol. 9, pp. 110-130. https://doi.org/10.1088/0964-1726/9/1/312">https://doi.org/10.1088/0964-1726/9/1/312

Ip K.-H., Tse P.-C. Optimal configuration of a piezoelectric patch for vibration control of isotropic rectangular plates. Smart Mater. Struct., 2001, vol. 10, pp. 395-403. https://doi.org/10.1088/0964-1726/10/2/401">https://doi.org/10.1088/0964-1726/10/2/401

Sun D., Tong L. Modal control of smart shells by optimizing discretely distributed piezoelectric transducers. Int. J. Solid. Struct., 2001, vol. 38, pp. 3281-3299. https://doi.org/10.1016/S0020-7683(00)00224-9">https://doi.org/10.1016/S0020-7683(00)00224-9

Parton V.Z., Kudryavtsev B.A. Elektromagnitouprugost’ p’yezoelektricheskikh i elektroprovodnykh tel [Electromagnetoelasticity of piezoelectric and electrically conductive bodies]. Moscow, Nauka, 1988. 471 p.

Karnaukhov V.G., Kirichok I.F. Elektrotermovyazkouprugost’ [Electrothermoviscoelasticity]. Kiev, Nauk. Dumka, 1988. 319 p.

Shul'ga N.A., Bolkisev A.M. Kolebaniya p’yezoelektricheskikh tel [Oscillations of piezoelectric bodies]. Kiev, Nauk. dumka, 1990. 228 p.

Lekhnitskiy S.G. Teoriya uprugosti anizotropnogo tela [Theory of elasticity of an anisotropic body]. Moscow, Nauka, 1977. 416 p.

Lurie A.I. Theory of Elasticity. Springer, 2005. 1050 p. https://doi.org/10.1007/978-3-540-26455-2">https://doi.org/10.1007/978-3-540-26455-2

Iurlova N.A., Sevodina N.V., Oshmarin D.A., Iurlov M.A. Algorithm for solving problems related to the natural vibrations of electro-viscoelastic structures with shunt circuits using ANSYS data. International Journal of Smart and Nano Materials, 2019, vol. 10, pp. 156-176. https://doi.org/10.1080/19475411.2018.1542356">https://doi.org/10.1080/19475411.2018.1542356

Published

2019-12-30

Issue

Section

Articles

How to Cite

Iurlova, N. A., Oshmarin, D. A., Sevodina, N. V., & Kovalev, I. E. (2019). Modeling of deformation of a plate using piezoelectric elements located on its surface. Computational Continuum Mechanics, 12(4), 415-426. https://doi.org/10.7242/1999-6691/2019.12.4.35