Exponential time differencing for stiff systems with nondiagonal linear part

Authors

  • Evelina Vladimirovna Permyakova Perm State University
  • Denis Sergeyevich Goldobin Institute of Continuous Media Mechanics UB RAS

DOI:

https://doi.org/10.7242/1999-6691/2019.12.4.34

Keywords:

exponential time differencing, Cox-Matthews methods, stiff systems, nondiagonal equations

Abstract

Exponential time differencing methods provide instability-free explicit schemes for systems with fast decaying or oscillating modes (stiff systems), without limitation on the time step size. Moreover, with these methods, one can drastically diminish the error accumulation rate for numerical simulation of conservative systems. The methods yield an especially large performance gain for PDEs with high order of spatial derivatives. Simultaneously, the problem of analytical calculation of coefficients of exponential time differencing schemes becomes laborious or unsolvable in the case of a nondiagonal form of the principal linear part of equations. We introduce an approach, where the scheme coefficients are obtained from the direct numerical integration of certain auxiliary problems over a short time interval - one scheme step size. The approach is universal and its implementation is illustrated with four examples: analytically solvable system of two first-order ODEs, one-dimensional reaction-diffusion system under time-dependent conditions, two-dimensional reaction-diffusion system under time-independent and time-dependent conditions, and one-dimensional Cahn-Hilliard equation with constant coefficients. The employment of an exponential time differencing method of the two-step Runge-Kutta type yields a simulation performance gain for the diffusion-type equation, with program optimization made. Without program optimization, the performance gain increases by one order with respect to the spatial step size for each order of the highest spatial derivative, and appears starting from the third order of the derivative. With the tested method, one can extend the study of an analogue of the Anderson localization to two- and three-dimensional active media and achieve an acceptable performance for the direct numerical simulations of dynamics of the probability density function for active Brownian particles.

Downloads

Download data is not yet available.
Supporting Agencies
Работа выполнена при финансовой поддержке Российского научного фонда (грант № 19-42-04120).

References

Kuramoto Y., Tsuzuki T. Persistent propagation of concentration waves in dissipative media far from thermal equilibrium. Prog. Theor. Phys., 1976, vol. 55, no. 2, pp. 356-369. https://doi.org/10.1143/PTP.55.356">https://doi.org/10.1143/PTP.55.356

Knobloch E. Pattern selection in long-wavelength convection. Phys. Nonlinear Phenom., 1990, vol. 41, no. 3, pp. 450-479.           https://doi.org/10.1016/0167-2789(90)90008-D">https://doi.org/10.1016/0167-2789(90)90008-D

Shtilman L., Sivashinsky G. Hexagonal structure of large-scale Marangoni convection. Phys. Nonlinear Phenom., 1991, vol. 52, no. 2-3, pp. 477-488. https://doi.org/10.1016/0167-2789(91)90140-5">https://doi.org/10.1016/0167-2789(91)90140-5

Schöpf W., Zimmermann W. Multicritical behaviour in binary fluid convection. Europhys. Lett., 1989, vol. 8, no. 1, pp. 41-46. https://doi.org/10.1209/0295-5075/8/1/008">https://doi.org/10.1209/0295-5075/8/1/008

Schöpf W., Zimmermann W. Convection in binary fluids: Amplitude equations, codimension-2 bifurcation, and thermal fluctuations. Phys. Rev. E, 1993, vol. 47, no. 3, pp. 1739-1764. https://doi.org/10.1103/PhysRevE.47.1739">https://doi.org/10.1103/PhysRevE.47.1739

Goldobin D.S., Shklyaeva E.V. Large-scale thermal convection in a horizontal porous layer. Phys. Rev. E, 2008, vol. 78, no. 2. 027301. https://doi.org/10.1103/PhysRevE.78.027301">https://doi.org/10.1103/PhysRevE.78.027301

Matthews P.C., Cox S.M. One-dimensional pattern formation with Galilean invariance near a stationary bifurcation. Phys. Rev. E, 2000, vol. 62, no. 2, R1473. https://doi.org/10.1103/PhysRevE.62.R1473">https://doi.org/10.1103/PhysRevE.62.R1473

Matthews P.C., Cox S.M. Pattern formation with a conservation law. Nonlinearity, 2000, vol. 13, no. 4, pp. 1293-1320. https://doi.org/10.1088/0951-7715/13/4/317">https://doi.org/10.1088/0951-7715/13/4/317

Shklyaev S., Khenner M., Alabuzhev A.A. Oscillatory and monotonic modes of long-wave Marangoni convection in a thin film. Phys. Rev. E, 2010, vol. 82, no. 2. 025302. https://doi.org/10.1103/PhysRevE.82.025302">https://doi.org/10.1103/PhysRevE.82.025302

Samoilova A.E., Shklyaev S. Oscillatory Marangoni convection in a liquid-gas system heated from below. Eur. Phys. J. Spec. Top., 2015, vol. 224, no. 2, pp. 241-248. https://doi.org/10.1140/epjst/e2015-02356-4">https://doi.org/10.1140/epjst/e2015-02356-4

Straube A.V., Pikovsky A. Mixing-induced global modes in open active flow. Phys. Rev. Lett., 2007, vol. 99, no. 18. 184503. https://doi.org/10.1103/PhysRevLett.99.184503">https://doi.org/10.1103/PhysRevLett.99.184503

Bratsun D.A., Mosheva E.A. Peculiar properties of density wave formation in a two-layer system of reacting miscible liquids. Vychisl. mekh. splosh. sred – Computational Continuum Mechanics, 2018, vol. 11, no. 3, pp. 302-322. https://doi.org/10.7242/1999-6691/2018.11.3.23">https://doi.org/10.7242/1999-6691/2018.11.3.23

Tsiberkin K.B. Two-dimensional flows in finite-width channels partially filled with porous medium. Vychisl. mekh. splosh. sred – Computational Continuum Mechanics, 2018, vol. 11, no. 4, pp. 438-447. https://doi.org/10.7242/1999-6691/2018.11.4.34">https://doi.org/10.7242/1999-6691/2018.11.4.34

Goldobin D.S., Kovalevskaya K.V., Lyubimov D.V. Elastic and inelastic collisions of interfacial solitons and integrability of two-layer fluid system subject to horizontal vibrations. Europhys. Lett., 2014, vol. 108, 54001. https://doi.org/10.1209/0295-5075/108/54001">https://doi.org/10.1209/0295-5075/108/54001

Goldobin D.S., Pimenova A.V., Kovalevskaya K.V., Lyubimov D.V., Lyubimova T.P. Running interfacial waves in two-layer fluid system subject to longitudinal vibrations. Phys. Rev. E, 2015, vol. 91, no. 5, 053010. https://doi.org/10.1103/PhysRevE.91.053010">https://doi.org/10.1103/PhysRevE.91.053010

Pelinovsky E.N., Shurgalina E.G. Formation of freak waves in a soliton gas described by the modified Korteweg-de Vries equation. Dokl. Phys., 2016, vol. 61, no. 9, pp. 423-426. https://doi.org/10.1134/S1028335816090032">https://doi.org/10.1134/S1028335816090032

Pelinovsky E.N., Didenkulova I.I., Shurgalina E.G. Wave dynamics in the channels of variable cross-section. Phys. Oceanogr., 2017, no. 3, pp. 19-27. https://doi.org/10.22449/1573-160X-2017-3-19-27">https://doi.org/10.22449/1573-160X-2017-3-19-27

Shurgalina E.G., Pelinovsky E.N., Gorshkov K.A. The effect of the negative particle velocity in a soliton gas within Korteweg-de Vries-type equations. Moscow Univ. Phys., 2017, vol. 72, no. 5, pp. 441-448. https://doi.org/10.3103/S0027134917050101">https://doi.org/10.3103/S0027134917050101

Slunyaev A.V. Analysis of the nonlinear spectrum of intense sea wave with the purpose of extreme wave prediction. Radiophys. Quantum El., 2018, vol. 61, no. 1, pp. 1-21. https://doi.org/10.1007/s11141-018-9865-8">https://doi.org/10.1007/s11141-018-9865-8

Goldobin D.S., Shklyaeva E.V. Localization and advectional spreading of convective flows under parametric disorder. J. Stat. Mech.: Theor. Exp., 2013, P09027. https://doi.org/10.1088/1742-5468/2013/09/P09027">https://doi.org/10.1088/1742-5468/2013/09/P09027

Goldobin D.S. Two scenarios of advective washing-out of localized convective patterns under frozen parametric disorder. Phys. Scr., 2019, vol. 94, 014011. https://doi.org/10.1088/1402-4896/aaeefa">https://doi.org/10.1088/1402-4896/aaeefa

Goldobin D.S., Shklyaeva E.V. Diffusion of a passive scalar by convective flows under parametric disorder. J. Stat. Mech.: Theor. Exp., 2009. P01024. https://doi.org/10.1088/1742-5468/2009/01/P01024">https://doi.org/10.1088/1742-5468/2009/01/P01024

Goldobin D.S. Advectional enhancement of eddy diffusivity under parametric disorder. Phys. Scr., 2010, vol. T142. 014050. https://doi.org/10.1088/0031-8949/2010/T142/014050">https://doi.org/10.1088/0031-8949/2010/T142/014050

Pikovsky A., Shepelyansky D. Destruction of Anderson localization by a weak nonlinearity. Phys. Rev. Lett., 2008, vol. 100, no. 9, 094101. https://doi.org/10.1103/PhysRevLett.100.094101">https://doi.org/10.1103/PhysRevLett.100.094101

Teimurazov A.S., Stepanov R.A., Verma M.K., Barman S., Kumar A., Shubhadeep S. Direct Numerical Simulation of Homogeneous Isotropic Helical Turbulence with the TARANG Code. J. Appl. Mech. Tech. Phy., 2018, vol. 59,
pp. 1279-1287. https://doi.org/10.1134/S0021894418070131">https://doi.org/10.1134/S0021894418070131

Tyulkina I.V., Goldobin D.S., Klimenko L.S., Pikovsky A.S. Dynamics of Noisy Oscillator Populations beyond the Ott-Antonsen Ansatz. Phys. Rev. Lett., 2018, vol. 120, no. 26, 264101. https://doi.org/10.1103/PhysRevLett.120.264101">https://doi.org/10.1103/PhysRevLett.120.264101

Tyulkina I.V., Goldobin D.S., Klimenko L.S., Pikovsky A.S. Two-bunch solutions for the dynamics of Ott-Antonsen phase ensembles. Radiophys. Quantum El., 2019, vol. 61, no. 8-9, pp. 640-649. https://doi.org/10.1007/s11141-019-09924-7">https://doi.org/10.1007/s11141-019-09924-7

Kuznetsov G.V., Sheremet M.A. Raznostnye metody resheniya zadach teploprovodnosti: uchebnoye posobiye [Finite-difference methods for solving thermal conduction problems: Study book]. Tomsk, TPU, 2007. 172 p.

Cox S.M., Matthews P.C. Exponential time differencing for stiff systems. J. Comput. Phys., 2002, vol. 176, no. 2, pp. 430-455. https://doi.org/10.1006/jcph.2002.6995">https://doi.org/10.1006/jcph.2002.6995

Hochbruck M., Ostermann A. Explicit exponential Runge-Kutta methods for semilinear parabolic problems. SIAM J. Numer. Anal., 2005, vol. 43, no. 3, pp. 1069-1090. https://doi.org/10.1137/040611434">https://doi.org/10.1137/040611434

Owolabi K.M. Mathematical study of two-variable systems with adaptive numerical methods. Numer. Analys. Appl., 2016, vol. 9, no. 3, pp. 218-230. https://doi.org/10.1134/S1995423916030046">https://doi.org/10.1134/S1995423916030046

Goldobin D.S. Relationships between the distribution of Watanabe-Strogatz variables and circular cumulants for Ensembles of phase elements. Fluct. Noise Lett., 2019, vol. 18, no. 2, 1940002. https://doi.org/10.1142/S0219477519400029">https://doi.org/10.1142/S0219477519400029

Goldobin D.S., Dolmatova A.V. Ott-Antonsen ansatz truncation of a circular cumulant series. Phys. Rev. Research, 2019, vol. 1, no. 3, 033139. https://doi.org/10.1103/PhysRevResearch.1.033139">https://doi.org/10.1103/PhysRevResearch.1.033139

Gardiner C.W. Handbook of Stochastic Methods. Berlin, Springer, 1983.

Wilemski G. On the derivation of Smoluchowski equations with corrections in the classical theory of Brownian motion. J. Stat. Phys., 1976, vol. 14, no. 2, pp. 153-169. https://doi.org/10.1007/BF01011764">https://doi.org/10.1007/BF01011764

Gardiner C.W. Adiabatic elimination in stochastic systems. I. Formulation of methods and application to few-variable systems. Phys. Rev. A, 1984, vol. 29, no. 5, pp. 2814-2822. https://doi.org/10.1103/PhysRevA.29.2814">https://doi.org/10.1103/PhysRevA.29.2814

Milster S., Nötel J., Sokolov I.M., Schimansky-Geier L. Eliminating inertia in a stochastic model of a micro-swimmer with constant speed. Eur. Phys. J. Spec. Top., 2017, vol. 226, no. 9, pp. 2039-2055. https://doi.org/10.1140/epjst/e2017-70052-8">https://doi.org/10.1140/epjst/e2017-70052-8

Murray J.D. Mathematical Biology. Berlin, Springer, 1993. Chapter 11. https://doi.org/10.1007/978-3-662-08542-4">https://doi.org/10.1007/978-3-662-08542-4

Sibly R.M., Barker D., Denham M.C., Hone J., Pagel M. On the regulation of populations of mammals, birds, fish, and insects. Science, 2005, vol. 309, no. 5734, pp. 607-610. https://doi.org/10.1126/science.1110760">https://doi.org/10.1126/science.1110760

Doncaster C.P. Comment on "On the regulation of populations of mammals, birds, fish, and insects" III. Science, 2006, vol. 311, no. 5764, p. 1100c. https://doi.org/10.1126/science.1122383">https://doi.org/10.1126/science.1122383

Anderson P.W. Absence of diffusion in certain random lattices. Phys. Rev., 1958, vol. 109, pp. 1492-1505. https://doi.org/10.1103/PhysRev.109.1492">https://doi.org/10.1103/PhysRev.109.1492

Mott N.F. Electrons in disordered structures. Adv. Phys., 1967, vol. 16, no. 61, pp. 49-144. https://doi.org/10.1080/00018736700101265">https://doi.org/10.1080/00018736700101265

Cahn J.W., Hilliard J.E. Free energy of a nonuniform system. I. Interfacial free energy // J. Chem. Phys. 1958. Vol. 28, no. 2. P. 258-267. https://doi.org/10.1063/1.1744102">https://doi.org/10.1063/1.1744102

Published

2019-12-30

Issue

Section

Articles

How to Cite

Permyakova, E. V., & Goldobin, D. S. (2019). Exponential time differencing for stiff systems with nondiagonal linear part. Computational Continuum Mechanics, 12(4), 403-414. https://doi.org/10.7242/1999-6691/2019.12.4.34