On the fundamental solution of the heat transfer problem in one-dimensional harmonic crystals

Authors

  • Ol’ga Sergeyevna Loboda Peter the Great St. Petersburg Polytechnic University; Institute for Problems in Mechanical Engineering RAS
  • Ekaterina Aleksandrovna Podolskaya Peter the Great St. Petersburg Polytechnic University; Institute for Problems in Mechanical Engineering RAS
  • Anton Miroslavovich Krivtsov Peter the Great St. Petersburg Polytechnic University; Institute for Problems in Mechanical Engineering RAS
  • Denis Valer’yevich Tsvetkov Peter the Great St. Petersburg Polytechnic University

DOI:

https://doi.org/10.7242/1999-6691/2019.12.4.33

Keywords:

thermal processes, kinetic temperature, one-dimensional crystal, fundamental solution, ballistic heat transfer, group velocity

Abstract

Unsteady thermal processes in low-dimensional structures are considered. Understanding the heat transfer at the micro-level is necessary to obtain a link between micro- and macroscopic descriptions of solids. At the macroscopic level, heat propagation is described by the Fourier law. However, at the microscopic level, analytical, numerical and experimental studies show significant deviations from this law. The previously created model of heat transfer at the microlevel, which has a ballistic character, is used in the work. The influence of non-nearest neighbors on the thermal processes in discrete media is studied, as well as the heat distribution in polyatomic lattices is considered. To describe the evolution of the initial thermal perturbation, the analysis of dispersion characteristics and group velocities in a one-dimensional crystal for a diatomic chain with alternating masses or stiffnesses and a monoatomic chain with regard for interaction with second neighbors is carried out. The fundamental solution of the heat propagation problem for the corresponding crystal models is obtained and studied. The fundamental solution allows us to obtain a description of the waves running from a point source and to use it as a basis for the construction of all other solutions. For both chains, the solution consists of two fronts moving one after another with different velocities and intensity characteristics. Quantitative estimations of the thermal wavefront intensity coefficients are given, and the dynamics of changes in speeds and intensities of the waves depending on the parameters of the problem is analyzed. Two mechanisms of evolution of the heat wavefront in one-dimensional discrete systems are revealed. The presented results can be used for correct interpretation of experiments on unsteady ballistic heat transfer in crystals.

Downloads

Download data is not yet available.
Supporting Agencies
Работа выполнена при поддержке Российского научного фонда (грант №17-71-10212, Е.А. Подольская, грант №18-11-00201, А.М. Кривцов) и РФФИ (проект №17-01-00230-a, О.С. Лобода).

References

Peierls R.E. Quantum theory of solids. Oxford University Press, 1965. 238 p.

Ziman J.M. Electrons and phonons. The theory of transport phenomena in solids. Oxford University Press, New York, 1960. 566 p.

Askar A. Lattice dynamical foundations of continuum theories. Word Scientific, 1985. 190 p.

Maugin G.A. Nonlinear waves in elastic crystals. Oxford University Press, 1999. 323 p.

Askes H., Metrikine A.V. Higher-order continua derived from discrete media: continualisation aspects and boundary conditions. Int. J. Solid. Struct., 2005, vol. 42, pp. 187-202. https://doi.org/10.1016/j.ijsolstr.2004.04.005">https://doi.org/10.1016/j.ijsolstr.2004.04.005

Indeitsev D.A., Sergeev A.D. Correlation between the properties of eigenfrequencies and eigenmodes in a chain of rigid bodies with torque connections. Vestnik St. Petersb. Univ. Math., 2017, vol. 50, pp. 166-172. https://doi.org/10.3103/S1063454117020066">https://doi.org/10.3103/S1063454117020066

Morozov N.F., Muratikov K.L., Semenov B.N., Indeitsev D.A., Vavilov D.S. Thermoacoustics of conductive materials under laser action. Dokl. Phys., 2019, vol. 64, pp. 169-172. https://doi.org/10.1134/S1028335819040037">https://doi.org/10.1134/S1028335819040037

Metrikine A.V., Askes H. An isotropic dynamically consistent gradient elasticity model derived from a 2D lattice. Phil. Mag., 2006, vol. 86, pp. 3259-3286. https://doi.org/10.1080/14786430500197827">https://doi.org/10.1080/14786430500197827

Potapov A.I., Pavlov I.S., Gorshkov K.A., Maugin G.A. Nonlinear interactions of solitary waves in a 2D lattice. Wave Motion, 2001, vol. 34, pp. 83-96. https://doi.org/10.1016/S0165-2125(01)00061-0">https://doi.org/10.1016/S0165-2125(01)00061-0

Pavlov I.S., Potapov A.I., Maugin G.A. A 2D granular medium with rotating particles. Int. J. Solid. Struct., 2006, vol. 43, pp. 6194-6207. https://doi.org/10.1016/j.ijsolstr.2005.06.012">https://doi.org/10.1016/j.ijsolstr.2005.06.012

Golovnev I.F., Golovneva E.I., Fomin V.M. Investigation of thermal instability in nano-dimensional systems by molecular dynamics method. AIP Conference Proceedings, 2018, vol. 2027, 030143. https://doi.org/10.1063/1.5065237">https://doi.org/10.1063/1.5065237

Vasiliev A.A., Dmitriev S.V., Miroshnichenko A.E. Multi-field continuum theory for medium with microscopic rotations. Int. J. Solid. Struct., 2005, vol. 42, pp. 6245-6260. https://doi.org/10.1016/j.ijsolstr.2005.03.041">https://doi.org/10.1016/j.ijsolstr.2005.03.0411

Vasiliev A.A., Dmitriev S.V., Miroshnichenko A.E. Mutlti-field approach in mechanics of structured solids. Int. J. Solid. Struct., 2010, vol. 47, pp. 510-525. https://doi.org/10.1016/j.ijsolstr.2009.10.016">https://doi.org/10.1016/j.ijsolstr.2009.10.016

Le-Zakharov A.A., Krivtsov A.M. Molecular dynamics investigation of heat conduction in crystals with defects. Dokl. Phys., 2008, vol. 53, pp. 261-264. https://doi.org/10.1134/S1028335808050066">https://doi.org/10.1134/S1028335808050066

Chandrasekharaiah D.S. Thermoelasticity with second sound: A review. Appl. Mech. Rev., 1986, vol. 39, pp. 355-376. https://doi.org/10.1115/1.3143705">https://doi.org/10.1115/1.3143705

Poletkin K.V., Gurzadyan G.G., Shang J., Kulish V. Ultrafast heat transfer on nanoscale in thin gold films. Appl. Phys. B, 2012, vol. 107, pp. 137-143. https://doi.org/10.1007/s00340-011-4862-z">https://doi.org/10.1007/s00340-011-4862-z

Rieder Z., Lebowitz J.L., Lieb E. Properties of a harmonic crystal in a stationary nonequilibrium state. J. Math. Phys., 1967, vol. 8, pp. 1073-1078. https://doi.org/10.1063/1.1705319">https://doi.org/10.1063/1.1705319

Kuzkin V.A., Krivtsov A.M. Fast and slow thermal processes in harmonic scalar lattices. J. Phys.: Condens. Matter, 2017, vol. 29, 505401. https://doi.org/10.1088/1361-648X/aa98eb">https://doi.org/10.1088/1361-648X/aa98eb

Dhar A. Heat transport in low-dimensional systems. Adv. Phys., 2008, vol. 57, pp. 457-537. https://doi.org/10.1080/00018730802538522">https://doi.org/10.1080/00018730802538522

Thermal transport in low dimensions. From statistical physics to nanoscale heat transfer, ed. S. Lepri. Springer International Publishing, 2016. 422 p. https://doi.org/10.1007/978-3-319-29261-8">https://doi.org/10.1007/978-3-319-29261-8

Guzev M.A. The Fourier law for a one-dimensional crystal. VMZh – Far Eastern Mathematical Journal, 2018, no. 1, pp 34‑38.

Sokolov A.A., Krivtsov A.M., Muller W.H. Localized heat perturbation in harmonic 1D crystals: Solutions for the equation of anomalous heat conduction. Phys. Mesomech., 2017, vol. 20, pp. 305-130. https://doi.org/10.1134/S1029959917030067">https://doi.org/10.1134/S1029959917030067

Kuzkin V.A., Krivtsov A.M. High-frequency thermal processes in harmonic crystals. Dokl. Phys., 2017, vol. 62, pp. 85-89. https://doi.org/10.1134/S1028335817020070">https://doi.org/10.1134/S1028335817020070

Kuzkin V.A., Krivtsov A.M. An analytical description of transient thermal processes in harmonic crystals. Phys. Solid State, 2017, vol. 59, pp. 1051-1062. https://doi.org/10.1134/S1063783417050201">https://doi.org/10.1134/S1063783417050201

Krivtsov A.M. Energy oscillations in a one-dimensional crystal. Dokl. Phys., 2014, vol. 59, pp. 427-430. https://doi.org/10.1134/S1028335814090080">https://doi.org/10.1134/S1028335814090080

Krivtsov A.M. Heat transfer in infinite harmonic one-dimensional crystals. Dokl. Phys., 2015, vol. 60, pp. 407-411. https://doi.org/10.1134/S1028335815090062">https://doi.org/10.1134/S1028335815090062

Krivtsov A.M. The ballistic heat equation for a one-dimensional harmonic crystal. Dynamical processes in generalized continua and structures, ed. H. Altenbach, A. Belyaev, V. Eremeyev, A. Krivtsov, A. Porubov. Springer, 2019. P. 345‑358. https://doi.org/10.1007/978-3-030-11665-1_19">https://doi.org/10.1007/978-3-030-11665-1_19

Gavrilov S.N., Krivtsov A.M. Thermal equilibration in a one-dimensional damped harmonic crystal. Phys. Rev. E, 2019, vol. 100, 022117. https://doi.org/10.1103/PhysRevE.100.022117">https://doi.org/10.1103/PhysRevE.100.022117

Berinskii I.E., Kuzkin V.A. Equilibration of energies in a two-dimensional harmonic graphene lattice. Phil. Trans. Math. Phys. Eng. Sci., 2019, vol. 378, 20190114. https://doi.org/10.1098/rsta.2019.0114">https://doi.org/10.1098/rsta.2019.0114

Kosevich A.M., Savotchenko S.E. Peculiarities of dynamics of one-dimensional discrete systems with interaction extending beyond nearest neighbors and the role of higher dispersion in soliton dynamics. Low Temp. Phys., 1999, vol. 25, pp. 550‑557. https://doi.org/10.1063/1.593783">https://doi.org/10.1063/1.593783

Michelitsch T.M., Collet B., Wang X. Nonlocal constitutive laws generated by matrix functions: Lattice dynamics models and their continuum limits. Int. J. Eng. Sci., 2014, vol. 80, pp. 106-123. https://doi.org/10.1016/j.ijengsci.2014.02.029">https://doi.org/10.1016/j.ijengsci.2014.02.029

Porubov A.V., Krivtsov A.M., Osokina A.E. Two-dimensional waves in extended square lattice, available online. Int. J. Non Lin. Mech., 2018, vol. 99, pp. 281-287. https://doi.org/10.1016/j.ijnonlinmec.2017.12.008">https://doi.org/10.1016/j.ijnonlinmec.2017.12.008

Podolskaya E.A., Krivtsov A.M., Tsvetkov D.V. Anomalous heat transfer in one-dimensional diatomic harmonic crystal. Materials Physics and Mechanics, 2018, vol. 40, pp. 172-180. https://doi.org/10.18720/MPM.4022018_5">https://doi.org/10.18720/MPM.4022018_5

Loboda O., Krivtsov A., Porubov A., Tsvetkov D. Thermal processes in a one-dimensional crystal with regard for the second coordination sphere. ZAMM, 2019, vol. 99, e201900008. https://doi.org/10.1002/zamm.201900008">https://doi.org/10.1002/zamm.201900008

Kuzkin V.A. Thermal equilibration in infinite harmonic crystals. Continuum Mech. Thermodyn., 2019, vol. 31, pp. 1401‑423. https://doi.org/10.1007/s00161-019-00758-2">https://doi.org/10.1007/s00161-019-00758-2

Gel’fand I.M., Shilov G.E. Generalized functions. Vol. 1: Properties and Operations. AMS Chelsea Publishing, 1964. 450 p.

Ashcroft N., Mermin N. Solid state physics. Saunders college Publishing, 1976. 848 p.

Mandel’shtam L.I. Polnoye sobraniye trudov. T. IV. Lektsii po kolebaniyam [Complete Works. Vol. IV: Lectures on Oscillations]. Moscow, Izd-vo AN SSSR, 1955. 512 p.

Published

2019-12-30

Issue

Section

Articles

How to Cite

Loboda, O. S., Podolskaya, E. A., Krivtsov, A. M., & Tsvetkov, D. V. (2019). On the fundamental solution of the heat transfer problem in one-dimensional harmonic crystals. Computational Continuum Mechanics, 12(4), 390-402. https://doi.org/10.7242/1999-6691/2019.12.4.33