Modeling of liquid magnesium turbulent convection in the titanium reduction apparatus using RANS and LES approaches
DOI:
https://doi.org/10.7242/1999-6691/2019.12.4.30Keywords:
convection, turbulence, small Prandtl numbers, liquid metal, RANS, LES, numerical simulation, OpenFOAMAbstract
Turbulent convection of molten magnesium in a titanium reduction reactor is investigated. The reactor retort is a cylindrical vessel of radius 0.75 m and height 4 m, which contains liquid magnesium maintained at a temperature of 850°C. During the process lasting for more than two days, significant temperature gradients occur in the reduction apparatus due to an exothermic chemical reaction on the metal surface, cooling of the side wall of the retort and simultaneous heating of its bottom. Temperature gradients cause convective flows inside the reactor, which in turn significantly affect the formation of the titanium block. The mathematical model of convective flows in a reactor is based on the equations of thermogravitational convection for a single-phase medium in the Boussinesq approximation. The possibility of modeling turbulent convective flows in a titanium reduction reactor using RANS (Reynolds-averaged Navier-Stokes equations) k - ε and k - ω SST (Shear Stress Transport) models is considered. It is shown that the simulations performed with the k - ω SST model on relatively coarse grids (0.825 million finite volumes) give the results which qualitatively and quantitatively agree with the results of LES simulations on fine grids (3.7 million finite volumes). However, the k - ε model does not demonstrate acceptable results in some cases. The RANS simulations produce average velocity and temperature fields with averaging times much longer than those available in LES simulations. Several different configurations of the system of apparatus heating and cooling rate control, including previously unstudied ones, were examined. It has been found that the use of the k - ω SST model permits simulation of flow dynamics taking into account changes in the heating and cooling conditions of the apparatus during the entire process and identification of single-vortex and two-vortex large-scale flows in the retort and a transition between them, and hence the degree of influence of convection on the reaction can be assessed.
Downloads
References
Frick P., Khalilov R., Kolesnichenko I., Mamykin A., Pakholkov V., Pavlinov A., Rogozhkin S. Turbulent convective heat transfer in a long cylinder with liquid sodium. Europhys. Lett., 2015, vol. 109, 14002. http://dx.doi.org/10.1209/0295-5075/109/14002">http://dx.doi.org/10.1209/0295-5075/109/14002
Khalilov R., Kolesnichenko I., Pavlinov A., Mamykin A., Shestakov A., Frick P. Thermal convection of liquid sodium in inclined cylinders. Phys. Rev. Fluids, 2018, vol. 3, 043503. http://dx.doi.org/10.1103/PhysRevFluids.3.043503">http://dx.doi.org/10.1103/PhysRevFluids.3.043503
Teimurazov A., Frick P. Thermal convection of liquid metal in a long inclined cylinder. Phys. Rev. Fluids, 2017, vol. 2, 113501. https://doi.org/10.1103/physrevfluids.2.113501">https://doi.org/10.1103/physrevfluids.2.113501
Zwirner L., Shishkina O. Confined inclined thermal convection in low-Prandtl-number fluids. J. Fluid Mech., 2018, vol. 850, pp. 984-1008. http://dx.doi.org/10.1017/jfm.2018.477">http://dx.doi.org/10.1017/jfm.2018.477
Mandrykin S. D., Teimurazov A. S. 2018 Turbulent convection of liquid sodium in an inclined cylinder of unit aspect ratio. Vychisl. mekh. splosh. sred – Computational Continuum Mechanics, 2018, vol. 11, no. 4, pp. 417-428. https://doi.org/10.7242/1999-6691/2018.11.4.32">https://doi.org/10.7242/1999-6691/2018.11.4.32
Ahlers G., Grossmann S., Lohse D. Heat transfer and large scale dynamics in turbulent Rayleigh-Benard convection. Rev. Mod. Phys., 2009, vol. 81, pp. 503-537. http://dx.doi.org/10.1103/revmodphys.81.503">http://dx.doi.org/10.1103/revmodphys.81.503
Rogozhkin S.A., Aksenov A.A., Zhluktov S.V., Osipov S.L., Sazonova M.L., Fadeev I.D., Shepelev S.F., Shmelev V.V. Development and verification of a turbulent heat transport model for sodium-based liquid metal coolants. Vychisl. mekh. splosh. sred – Computational Continuum Mechanics, 2014, vol. 7, no. 3, pp. 306-316. https://doi.org/10.7242/1999-6691/2014.7.3.30">https://doi.org/10.7242/1999-6691/2014.7.3.30
Belyaev I.A., Genin L.G., Listratov Ya.I., Melnikov I.A., Sviridov V.G., Sviridov E.V., Ivochkin Yu.P., Razuvanov N.G., Shpansky Yu.S. Specific features of liquid metal heat transfer in a tokamak reactor. Magnetohydrodynamics, 2013, vol. 49, no. 1/2, pp. 177-190.
Garmata V.A., Guoyanitskiy B.S., Kramnik V.Yu., Lipkes Ya.M., Seryakov G.V., Suchkov A.B., Khomyakov P.P. Metallurgiya titana [Metallurgy of titanium]. Moscow, Metallurgiya, 1968. 643 p.
Garmata V.A., Petrun’ko A.N., Galitskiy N.V., Olesov Yu.G., Sandler R.A. Titan [Titanium]. Moscow, Metallurgiya, 1983. 559 p.
Sergeyev V.V., Galitskiy N.V., Kiselev V.P., Kozlov V.M. Metallurgiya titana [Metallurgy of titanium]. Moscow, Metallurgiya, 1971. 320 p.
Mal’shin V.M., Zavadovskaya V.N., Pampushko N.A. Metallurgiya titana [Metallurgy of titanium]. Moscow, Metallurgiya, 1991. 208 p.
Khalilov R.I., Khripchenko S.Yu., Frik P.G., Stepanov R.A. Electromagnetic measurements of the level of a liquid metal in closed volumes. Meas. Tech., 2007, vol. 50, pp. 861-866. https://doi.org/10.1007/s11018-007-0163-7">https://doi.org/10.1007/s11018-007-0163-7
Krauter N., Eckert S., Gundrum T., Stefani F., Wondrak T., Frick P., Khalilov R., Teimurazov A. Inductive system for reliable magnesium level detection in a titanium reduction reactor. Metall. and Materi. Trans. B, 2018, vol. 49, pp. 2089‑2096. https://doi.org/10.1007/s11663-018-1291-y">https://doi.org/10.1007/s11663-018-1291-y
Tarunin E.L., Shikhov V.M., Yurkov Yu.S. Svobodnaya konvektsiya v tsilindricheskom sosude pri zadannom teplovom potoke na verkhney granitse [Free convection in a cylindrical vessel for a given heat flux at the upper boundary]. Gidrodinamika [Hydrodynamics]. Perm, 1975. No. 6. Pp. 85-98.
Tsaplin A.I., Nechaev V.N. Numerical modeling of non-equilibrium heat and mass transfer processes in a reactor for the production of porous titanium. Vychisl. mekh. splosh. sred – Computational Continuum Mechanics, 2013, vol. 6, no. 3, pp. 483-490. https://doi.org/10.7242/1999-6691/2013.6.4.53">https://doi.org/10.7242/1999-6691/2013.6.4.53
Teimurazov A.S., Frick P. G. Numerical study of molten magnesium convection in a titanium reduction apparatus. J. Appl. Mech. Tech. Phy., 2016, vol. 57, pp. 1264-1275. https://doi.org/10.1134/S0021894416070129">https://doi.org/10.1134/S0021894416070129
Teimurazov A., Frick P., Stefani F. Thermal convection of liquid metal in the titanium reduction reactor. IOP Conf. Ser.: Mater. Sci. Eng., 2017, vol. 208, 012041. https://doi.org/10.1088/1757-899X/208/1/012041">https://doi.org/10.1088/1757-899X/208/1/012041
Teimurazov A., Frick P., Weber N., Stefani F. Numerical simulations of convection in the titanium reduction reactor. J. Phys.: Conf. Ser., 2017, vol. 891, 012076. https://doi.org/10.1088/1742-6596/891/1/012076">https://doi.org/10.1088/1742-6596/891/1/012076
Khalilov R., Kolesnichenko I., Teimurazov A., Mamykin A., Frick P. Natural convection in a liquid metal locally heated from above. IOP Conf. Ser.: Mater. Sci. Eng., 2017, vol. 208, 012044. https://doi.org/10.1088/1757-899X/208/1/012044">https://doi.org/10.1088/1757-899X/208/1/012044
Pope S.B. Turbulent flows. Cambridge University Press, 2000. 805 p. https://doi.org/10.1017/CBO9780511840531">https://doi.org/10.1017/CBO9780511840531
Deardorff J.W. A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech., 1970, vol. 41, pp. 453-480. http://dx.doi.org/10.1017/S0022112070000691">http://dx.doi.org/10.1017/S0022112070000691
Issa R.I. Solution of the implicitly discretized fluid flow equations by operator-splitting. J. Comput. Phys., 1986, vol. 62. pp. 40-65. https://doi.org/10.1016/0021-9991(86)90099-9">https://doi.org/10.1016/0021-9991(86)90099-9
Chen F., Huai X., Cai J., Li X., Ruixue Meng. Investigation on the applicability of turbulent-Prandtl-number models for liquid lead-bismuth eutectic. Nucl. Eng. Des., 2013, vol. 257, pp. 128-133. https://doi.org/10.1016/j.nucengdes.2013.01.005">https://doi.org/10.1016/j.nucengdes.2013.01.005
Cebeci T. Model for eddy conductivity and turbulent Prandtl number. J. Heat Tran., 1973, vol. 95, pp. 227-234. https://doi.org/10.1115/1.3450031">https://doi.org/10.1115/1.3450031