Some aspects of manufacturing prepregs for long-dimensional products from composite materials with a thermoplastic binder

Authors

  • Oleg Ivanovich Skul’skiy Institute of Continuous Media Mechanics UB RAS

DOI:

https://doi.org/10.7242/1999-6691/2019.12.3.29

Keywords:

composite materials, carbon fiber, thermoplastic binder, rheological properties. PEEK, numerical model, layer thickness, impregnation front

Abstract

Technology for producing parts from composite materials with a thermoplastic binder differs from traditional manufacturing methods which use thermosetting resins and therefore it requires new design and technological solutions. The approach proposed in this paper involves coating carbon filaments with a layer of thermoplastic melt at the prepreg preparation stage to ensure its more uniform distribution and deeper impregnation at the product molding stage. To describe the rheological properties of a polyether ether ketone melt (PEEK), a generalized Carreau model was applied and its material constants were determined. Based on the finite element method, a numerical model of the process of applying a layer of thermoplastic on a carbon filament in an axisymmetric die was constructed. The velocity, pressure and temperature fields are calculated, and the effect of applied pressure and core drawing speed on the applied layer thickness is determined. The required layer thickness is determined from an equality of the cross-sectional areas of the applied layers and the total area of voids between the filaments and between the carbon fibers. The dependence of the resulting thickness of the applied layer on the filament drawing speed and inlet pressure is determined. Based on the analytical solution of the flat-radial filtration problem, a dimensionless equation is obtained for determining the front of impregnation of a porous carbon fiber under external pressure linearly distributed along the die channel. The proposed mathematical model allows one to determine pressure and temperature fields, kinematics of fluid flow, to evaluate the influence of technological parameters on the thickness of the thermoplastic layer applied on the filament and to predict the degree of homogeneity of the finished product.

Downloads

Download data is not yet available.

References

O'Bradaigh C.M. Sheet forming of composite materials. Flow and rheology in polymer composites manufacturing, ed. S.G. Advani. Elsevier, 1995.

Johnson A.F. Rheological model for the forming of fabric-reinforced thermoplastic sheets. Composites Manufacturing, 1995, vol. 6, pp. 153-160. https://doi.org/10.1016/0956-7143(95)95006-K">https://doi.org/10.1016/0956-7143(95)95006-K

Johnson A.F., Picket A.K. Numerical simulation of the forming process in long fibre reinforced thermoplastics. WIT Transactions on Engineering Sciences, 1996, vol. 10, pp. 233-242. (URL: https://www.witpress.com/elibrary/wit-transactions-on-engineering-sciences/10/8842">https://www.witpress.com/elibrary/wit-transactions-on-engineering-sciences/10/8842)

Sirotkin O.S., Andriunina M.A., Beider E.Ya. New structural and functional polymeric composite materials based on thermoplastics AND their molding technology. Aviatsionnaya promyshlennost’ – Aviation industry, 2012, no. 4, pp. 43-47.

Chen X., Zhang Y., Shilin Y. Two-dimensional simulations of resin flow in dual-scale fibrous porous medium under constant pressure. J. Reinforc. Plast. Compos., 2013, vol. 32, pp. 1757-1766. http://dx.doi.org/10.1177/0731684413496573">http://dx.doi.org/10.1177/0731684413496573

Yang B., Tang Q., Wang S., Jin T., Bi F. Three-dimensional numerical simulation of the filling stage in resin infusion process. J. Compos. Mater., 2016, vol. 50, pp. 4171-4186. https://doi.org/10.1177%2F0021998316631809">https://doi.org/10.1177%2F0021998316631809

Beyder E.Y., Petrova G.N. The thermoplastic binder for polymeric composite materials. Trudy VIAM – Proceedings of VIAM, 2015, no. 11, pp. 40-49. https://doi.org/10.18577/2307-6046-2015-0-11-5-5">https://doi.org/10.18577/2307-6046-2015-0-11-5-5

Saad A., Echchelh A., Hattabi M., El Ganaoui M., Lahlou F. Numerical simulation and analysis of flow in resin transfer moulding process. FDMP, 2012, vol. 8, pp. 277-294. https://doi.org/10.3970/fdmp.2012.008.277">https://doi.org/10.3970/fdmp.2012.008.277

Doi M., Edwards S.F. The theory of polymer dynamics. Oxford University Press, 1986. 404 p.

Sil’chenkov D.G., Grishin S.V., Gladkov I.B. RF Patent No. 2,386,183, Byull. Izobret., 10 April 2010.

Ershov S.V. Prostranstvennoye techeniye rasplavov polimerov v kanale zony dozirovaniya plastitsiruyushchego ekstrudera i formuyushchego instrumenta [The spatial flow of polymer melts in the channel of the dosing zone of a plasticizing extruder and a forming tool]. PhD Dissertation, Perm National Research Polytechnic University, Perm, 2018. 119 p.

Kuznetsova Yu. L., Skul’skiy O.I. Issledovaniye reologicheskikh modeley rastvorov polimerov na reometricheskikh techeniyakh [The study of rheological models of polymer solutions in rheometric flows]. Matematicheskoye modelirovaniye v estestvennykh naukakh, 2013, pp. 92-94.

Skul’skiy O.I., Aristov S.N. Mekhanika anomal’no vyazkikh zhidkostey [Mechanics of abnormally viscous fluid]. Moskow-Izhevsk: Regulyarnaya i khaoticheskaya dinamika, 2004. 154 p.

Kuznetsova Yu.L., Skul’skiy O.I. Effect of different flows on the shear branding of a liquid with a non-monotonic flow curve. J. Appl. Mech. Tech. Phy., 2019, vol. 60, no. 1, pp. 22-30. https://doi.org/10.1134/S0021894419010048">https://doi.org/10.1134/S0021894419010048

Segerlind L.J. Applied finite element analysis. Wiley, 1976.

Zienkiewicz O.C, Taylor R.L., Zhu J.Z. The finite element method. Its basis and fundamentals. Butterworth-Heinemann, 2013. 756 p. https://doi.org/10.1016/C2009-0-24909-9">https://doi.org/10.1016/C2009-0-24909-9

Cook R.D., Malkus D.S., Plesha M.E. Concepts and applications of finite element analysis. Wiley, 1989. 637 p

Pickett A.K., Queckbörner T., de Luca P., Haug E. An explicit finite element solution for the forming prediction of continuous fibre-reinforced thermoplastic sheets. Composites Manufacturing, 1995, vol. 6, pp. 237-243. https://doi.org/10.1016/0956-7143(95)95016-R">https://doi.org/10.1016/0956-7143(95)95016-R

Jenny P., Lee S.H., Tchelepi H.A. Adaptive fully implicit multi-scale finite-volume method for multi-phase flow and transport in heterogeneous porous media. J. Comput. Phys., 2006, vol. 217, pp. 627-641. https://doi.org/10.1016/j.jcp.2006.01.028">https://doi.org/10.1016/j.jcp.2006.01.028

Dimitrienko Yu.I., Levina A.I., Bozhenik P. Finite element modeling of local processes of transfer in porous media. VestnikMGTU im. N.E. Baumana. Seriya: Estestvennyye nauki – Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2008, no. 3, pp. 90-103.

Dimitrienko Y.I., Shuguang Li. Konechno-elementnoye modelirovaniye neizotermicheskogo statsionarnogo techeniya nen’yutonovskoy zhidkosti v slozhnykh oblastyakh [Mathematical simulation of non-isothermal steady flow of non-Newtonian fluid by finite element method]. Matematicheskoye modelirovaniye i chislennyye metody – Mathematical Modeling and Computational Methods, 2018, no. 2, pp. 70-95. (URL: http://mmcm.bmstu.ru/articles/164/">http://mmcm.bmstu.ru/articles/164/

Skul’skiy O.I., Fonarev A.V., Kuznetsova Yu.L. «FEM FLOW» – finite element program for calculating the flow of a viscoelastic fluid in channels with a free surface, taking into account non-isothermal. RF Copyright Certificate No. 2007611760, 25 April 2007.

Barenblatt G.I., Еntov V.M., Ryzhik V.M. Dvizheniye zhidkostey i gazov v prirodnykh plastakh [The movement of liquids and gases in natural strata]. Moscow, Nedra, 1984. 211 p.

Muskat M. The flow of homogeneous fluids through porous media. McGraw-Hill Book Company, 1937. 783 p.

LeBel F., Fanaei A.E., Ruiz É., Trochu F. Prediction of optimal flow front velocity to minimize void formation in dual scale fibrous reinforcements. Int. J. Mater. Form., 2014, vol. 7, pp. 93-116. https://doi.org/10.1007/s12289-012-1111-x">https://doi.org/10.1007/s12289-012-1111-x

Dimitrienko Yu.I., Bogdanov I.O. Mnogomasshtabnoye modelirovaniye protsessov fil’tratsii zhidkogo svyazuyushchego v kompozitnykh konstruktsiyakh, izgotavlivayemykh metodom RTM [Multiscale modeling of liquid binder filtration processes in composite structures manufactured by RTM]. Matematicheskoye modelirovaniye i chislennyye metody – Mathematical Modeling and Computational Methods, 2017, no. 2, pp. 3-27. (URL: http://mmcm.bmstu.ru/articles/131/">http://mmcm.bmstu.ru/articles/131/)

Published

2019-09-30

Issue

Section

Articles

How to Cite

Skul’skiy, O. I. (2019). Some aspects of manufacturing prepregs for long-dimensional products from composite materials with a thermoplastic binder. Computational Continuum Mechanics, 12(3), 334-343. https://doi.org/10.7242/1999-6691/2019.12.3.29