Modeling of capillary coaxial gap filling with viscous liquid
DOI:
https://doi.org/10.7242/1999-6691/2019.12.3.27Keywords:
coaxial capillary, free surface, dynamic edge angle, finite element method, three-phase contact lineAbstract
A variational formulation of the boundary value problem on the motion of a viscous incompressible fluid with a free surface and changing dynamic boundary angles is proposed. The mathematical description of the process is based on the equations of motion, continuity and natural boundary conditions on the free surface. The traditional feature of the mathematical model on the three-phase contact lines (LTPC) is eliminated by the slip condition. The boundary angle on the LTPC is included in the variational formulation of the problem by replacing the curvature of the free boundary by the Laplace - Beltrami operator and using integration in parts. To describe the dynamic conditions on the LTPC, linking the speed of the LTPC and the dynamic edge angles on the solid walls of the cylinders, the empirical Jiang ratio is used. The numerical solution of the problem is based on the mixed finite element method with approximation of the main variables of the problem (velocity and pressure vector) satisfying the compatibility condition (LBB - condition). In addition, we use a singular finite element and a discontinuous approximation for the pressure to reduce the pressure oscillations in the vicinity of the LTPC. The numerical implementation of the kinematic condition of the free surface motion is performed according to the predictor-corrector scheme. The algorithm is tested on the problems with an analytical solution. Numerical studies of the flow kinematics and the free surface behavior when filling the coaxial gap in terms of the determining parameters of the Reynolds numbers (Re) in the range from 0 to 5, Stokes (W) in the range from 0 to 300 and capillary number (Ca) in the range from 0.0001 to 10 are carried out. The influence of the main parameters of the problem and dynamic conditions on LTPC on the evolution and maximum deflection of the free boundary is shown. For slow filling conditions, gravitational and capillary forces have the greatest influence on the kinematic characteristics of the filling. In this case, the dominant influence on the evolution of the free surface of the capillary forces begins with the values of the capillary numbers less than CA < 0,1. Increasing the flow rate (Re > 1) leads to a significant increase in the deflection of the free surface.
Downloads
References
Rose W. Fluid-fluid interfaces in steady motion. Nature, 1961, vol. 191, pp. 242-243.
Huh C., Scriven L.E. Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Colloid Interface Sci., 1971, vol. 35, pp. 85-101. https://doi.org/10.1016/0021-9797(71)90188-3">https://doi.org/10.1016/0021-9797(71)90188-3
Dussan V. E.B., Davis S.H. On the motion of a fluid-fluid interface along a solid surface. J. Fluid Mech., 1974, vol. 65, pp. 71‑95. https://doi.org/10.1017/S0022112074001261">https://doi.org/10.1017/S0022112074001261
Pukhnachev V.V., Solonnikov V.A. On the problem of dynamic contact angle. J. Appl. Math. Mech., 1982, vol. 46, pp. 771-779. https://doi.org/10.1016/0021-8928(82)90059-4">https://doi.org/10.1016/0021-8928(82)90059-4
Shikhmurzaev Y.D. Moving contact lines in liquid/liquid/solid structure. J. Fluid Mech., 1997, vol. 334, pp. 211-249. https://doi.org/10.1017/S0022112096004569">https://doi.org/10.1017/S0022112096004569
Mitsoulis E. Fountain flow revisited: The effect of various fluid mechanics parameters. AIChE J., 2010, vol. 56, pp. 1147-1162. https://doi.org/10.1002/aic.12038">https://doi.org/10.1002/aic.12038
Borzenko E.I., Ryl'tsev I.A., Shrager G.R. Kinematics of Bulkley–Herschel fluid flow with a free surface during the filling of a channel. Fluid dyn., 2017, vol. 52, no 5, pp. 646-656. https://doi.org/10.1134/S0015462817050064">https://doi.org/10.1134/S0015462817050064
Bulgakov V.K., Lipanov A.M., Chekhonin K.A. Filling the region between vertical coaxial cylinders of an anomalously viscous fluid under nonisothermal conditions. Journal of Engineering Physics, 1989, vol. 57, pp. 1169-1175. https://doi.org/10.1007/BF00871133">https://doi.org/10.1007/BF00871133
Chekhonin K.A., Sukhinin P.A. Dvizheniye nelineyno-vyazkoplastichnoy zhidkosti so svobodnoy poverkhnost’yu pri zapolnenii osesimmetrichnogo ob”yema [Non-linear visco-plastic fluid flow with free surface under filling up the axi symmetric channel]. Mat. Modelirovaniye – Mathematical Models and Computer Simulations, 2001, vol. 13, no. 3, pp. 89-102.
Chekhonin K.A., Sukhinin P.A. Numerical modeling of filling of an axisymmetric channel with a nonlinear viscoplastic fluid with allowance for the π-effect. J. Eng. Phys. Thermophys., 1999, vol. 72, pp. 851-855. https://doi.org/10.1007/BF02699405">https://doi.org/10.1007/BF02699405
Wörner M. Numerical modeling of multiphase flow in microfluidics and micro process engineering: a review of methods and applications. Microfluid. Nanofluid., 2012, vol. 12, pp. 841-886. https://doi.org/10.1007/s10404-012-0940-8">https://doi.org/10.1007/s10404-012-0940-8
Bulgakov V.K., Chekhonin K.A. Osnovy teorii metoda smeshannykh konechnykh elementov [Fundamentals of the theory of mixed finite element method]. Khabarovsk: Izd-vo Khabar. politekh. in-ta, 1999. 283 p.
Fukai J., Shiiba Y., Yamamoto T., Miyatake O., Poulikakos D., Megaridis C.M., Zhao Z. Wetting effects on the spreadingof a liquid droplet colliding with a flat surface: experiment and modeling. Phys. Fluid., 1995, vol. 7, pp. 236-247. https://doi.org/10.1063/1.868622">https://doi.org/10.1063/1.868622
Renardy M., Renardy Y., Li J. Numerical simulation of moving contact line problems using a volume-of-fluid method. J. Comput. Phys., 2001, vol. 171, pp. 243-263. https://doi.org/10.1006/jcph.2001.6785">https://doi.org/10.1006/jcph.2001.6785
Ruschak K.J. A method for incorporating free boundaries with surface tension in finite element fluid-flow simulators. Int. J. Numer. Meth. Eng., 1980, vol. 15, pp. 639-648. https://doi.org/10.1002/nme.1620150502">https://doi.org/10.1002/nme.1620150502
Spelt P.D.M. A level-set approach for simulations of flows with multiple moving contact lines with hysteresis. J. Comput. Phys., 2005, vol. 207, pp. 389-404. https://doi.org/10.1016/j.jcp.2005.01.016">https://doi.org/10.1016/j.jcp.2005.01.016
Šikalo S., Wilhelm H.-D., Roisman I.V., Jakirlić S., Tropea C. Dynamic contact angle of spreading droplets: Experiments and simulations. Phys. Fluid., 2005, vol. 17, 062103. https://doi.org/10.1063/1.1928828">https://doi.org/10.1063/1.1928828
Dziuk G. An algorithm for evolutionary surfaces. Numer. Math., 1990, vol. 58, pp. 603-611. https://doi.org/10.1007/BF01385643">https://doi.org/10.1007/BF01385643
Dziuk G., Elliott C.M. Finite elements on evolving surfaces. IMA J. Numer. Anal., 2007, vol. 27, pp. 262-292. https://doi.org/10.1093/imanum/drl023">https://doi.org/10.1093/imanum/drl023
Gross S., Reusken A. Finite element discretization error analysis of a surface tension force in two-phase incompressible flows. SIAM J. Numer. Anal., 2007, vol. 45, pp. 1679-1700. https://doi.org/10.1137/060667530">https://doi.org/10.1137/060667530
Saksono P.H., Perić D. On finite element modelling of surface tension: Variational formulations and applications - Part II: Dynamic problems. Comput. Mech., 2006, vol. 38, pp. 251-263. https://doi.org/10.1007/s00466-005-0745-7">https://doi.org/10.1007/s00466-005-0745-7
Slikkerveer P.J., Van Lohuizen E.P., O’Brien S.B.G. An implicit surface tension algorithm for Picard solvers of surface-tension-dominated free and moving boundary problems. Int. J. Numer. Meth. Fluid., 1996, vol. 22, pp. 851-865. https://doi.org/10.1002/(SICI)1097-0363(19960515)22:9%3c851::AID-FLD380%3e3.0.CO;2-R">https://doi.org/10.1002/(SICI)1097-0363(19960515)22:9<851::AID-FLD380>3.0.CO;2-R
Brooks A.N., Hughes T.J.R. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Meth. Appl. Mech. Eng., 1982, vol. 32, pp. 199-259. https://doi.org/10.1016/0045-7825(82)90071-8">https://doi.org/10.1016/0045-7825(82)90071-8
Saad Y., Schultz M.H. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. and Stat. Comput., 1986, vol. 7, pp. 856-869. https://doi.org/10.1137/0907058">https://doi.org/10.1137/0907058
Jiang T.-S., Oh S.-G., Slattery J.C. Correlation for dynamic contact angle. J. Colloid Interface Sci., 1979, vol. 69, pp. 74-77. https://doi.org/10.1016/0021-9797(79)90081-X">https://doi.org/10.1016/0021-9797(79)90081-X
Georgiou G.C., Olson L.G., Schultz W.W., Sagan S. A singular finite element for Stokes flow: The stick–slip problem. Int. J. Numer. Meth. Fluid., 1989, vol. 9, pp. 1353-1367. https://doi.org/10.1002/fld.1650091105">https://doi.org/10.1002/fld.1650091105
http://lits.ccfebras.ru/">http://lits.ccfebras.ru (accessed 10 April 2019).