Study of localized shear fracture mechanisms in alloys under dynamic loading

Authors

  • Mikhail Al’bertovich Sokovikov Institute of Continuous Media Mechanics UB RAS
  • Vasiliy Valer’yevich Chudinov Institute of Continuous Media Mechanics UB RAS
  • Vladimir Aleksandrovich Oborin Institute of Continuous Media Mechanics UB RAS
  • Sergey Vital’yevich Uvarov Institute of Continuous Media Mechanics UB RAS
  • Oleg Borisovich Naimark Institute of Continuous Media Mechanics UB RAS

DOI:

https://doi.org/10.7242/1999-6691/2019.12.3.26

Keywords:

plastic shear localization, dynamic loading, numerical simulation, defect structure evolution, study of the surface relief of deformed samples

Abstract

The split Hopkinson - Kolsky bar was used to perform dynamic tests on АМг6 alloy samples during target perforation. Thermodynamics of the deformation process was investigated to identify the characteristic strain localization stages through in-situ recoding of temperature fields with the infra-red camera CEDIP Silver 450M. Temperature measurements made in the localization zone have not provided sufficient evidence for the traditional strain localization mechanism occurred due to thermoplastic instability. In order to study the phenomenon of plastic strain localization with the split Hopkinson-Kolsky bar, a series of dynamic experiments were carried out on specially developed samples made of АМг6, Д16 and Steel 3 alloys using the StrainMaster system, which offers non-invasive shape, strain and stress measurements. Displacement and strain fields were constructed for the samples made of АМг6, Д16 and Steel 3 alloys tested under dynamic loading using the split Hopkinson - Kolsky bar. A comparison between the experimentally obtained temperature and strain fields and the numerical simulation results gained taking into account the distinguishing features of meso-defect accumulation kinetics shows that they agree well with accuracy to ~20%. The surface relief of the special shaped samples obtained experimentally was examined with the aid of an optical interferometer-profiler New-View 5010 and by performing 3D deformation relief data processing. These studies made it possible to calculate a scale invariant (Hurst index) and the spatial scale of the region, where the correlated behavior of defects can be observed. Based on the experimental results, the data of studying deformed sample surfaces and the results of numerical simulations performed taking into account the kinetics of meso-defect accumulation, we can suggest that one of the mechanisms responsible for plastic strain localization under high-speed loading conditions is caused by the jump-wise changes in the defect structure of materials.

Downloads

Download data is not yet available.
Supporting Agencies
Работа выполнена при частичной поддержки РФФИ (проекты №17-08-00905_a, 17-41-590149 р_а, 17-01-00867_а, 18-08-01186_а, 19-48-590009 р_а,).

References

Grady D.E., Kipp M.E. The growth of unstable thermoplastic shear with application to steady-wave shock compression in solids. J. Mech. Phys. Solid., 1987, vol. 35, pp. 95-119. https://doi.org/10.1016/0022-5096(87)90030-5">https://doi.org/10.1016/0022-5096(87)90030-5

Bai Y.L. Thermo-plastic instability in simple shear. J. Mech. Phys. Solid., 1982, vol. 30, pp. 195-207. https://doi.org/10.1016/0022-5096(82)90029-1">https://doi.org/10.1016/0022-5096(82)90029-1

Clifton R.J., Duffy J., Hartley K.A., Shawki T.G. On critical conditions for shear band formation at high strain rates. Scripta Metall., 1984, vol. 18, pp. 443-448. https://doi.org/10.1016/0036-9748(84)90418-6">https://doi.org/10.1016/0036-9748(84)90418-6

Molinari A. Instabilité thermoviscoplastique en cisaillement simple. J. Mec. Theor. Appl., 1985, vol. 4, no. 5, pp. 659-684.

Molinari A. Shear band analysis. Solid State Phenomena, 1988, vol. 3-4, pp. 447-467. https://doi.org/10.4028/www.scientific.net/SSP.3-4.447">https://doi.org/10.4028/www.scientific.net/SSP.3-4.447

Molinari A. Collective behavior and spacing of adiabatic shear bands. J. Mech. Phys. Solid., 1997, vol. 45, pp. 1551-1575. http://dx.doi.org/10.1016/S0022-5096(97)00012-4">http://dx.doi.org/10.1016/S0022-5096(97)00012-4

Molinari A., Clifton R.J. Localisation de la déformation viscoplastique en cisaillement simple, résultats exacts en théorie non-linéaire. C. R. l'Acad. Sci., Ser. II, 1983, vol. 296, pp. 1-4.

Wright T.W. Shear band susceptibility: Work hardening materials. Int. J. Plast., 1992, vol. 8, pp. 583-602. https://doi.org/10.1016/0749-6419(92)90032-8">https://doi.org/10.1016/0749-6419(92)90032-8

Wright T.W., Ockendon H. A scaling law for the effect of inertia on the formation of adiabatic shear bands. Int. J. Plast., 1996, vol. 12, pp. 927-934. https://doi.org/10.1016/S0749-6419(96)00034-4">https://doi.org/10.1016/S0749-6419(96)00034-4

Wright T.W., Walter J.W. On stress collapse in adiabatic shear bands. J. Mech. Phys. Solid., 1987, vol. 35, pp. 701-720. https://doi.org/10.1016/0022-5096(87)90051-2">https://doi.org/10.1016/0022-5096(87)90051-2

Zhou F., Wright T.W., Ramesh K.T. The formation of multiple adiabatic shear bands. J. Mech. Phys. Solid., 2006, vol. 54, pp. 1376-1400. https://doi.org/10.1016/j.jmps.2006.01.006">https://doi.org/10.1016/j.jmps.2006.01.006

Yang Y., Zeng Y., Gao Z.W. Numerical and experimental studies of self-organization of shear bands in 7075 aluminium alloy. Mater. Sci. Eng. A, 2008, vol. 496, pp. 291-302. https://doi.org/10.1016/j.msea.2008.07.043">https://doi.org/10.1016/j.msea.2008.07.043

McDowell D.L. A perspective on trends in multiscale plasticity. Int. J. Plast., 2010, vol. 26, pp. 1280-1309. https://doi.org/10.1016/j.ijplas.2010.02.008">https://doi.org/10.1016/j.ijplas.2010.02.008

Austin R.A., McDowell D.L. A dislocation-based constitutive model for viscoplastic deformation of fcc metals at very high strain rates. Int. J. Plast., 2011, vol. 27, pp. 1-24. http://dx.doi.org/10.1016/j.ijplas.2010.03.002">http://dx.doi.org/10.1016/j.ijplas.2010.03.002

Bronkhorst C.A., Cerreta E.K., Xue Q., Maudlin P.J., Mason T.A., Gray G.T. An experimental and numerical study of the localization behavior of tantalum and stainless steel. Int. J. Plast., 2006, vol. 22, pp. 1304-1335. https://doi.org/10.1016/j.ijplas.2005.10.002">https://doi.org/10.1016/j.ijplas.2005.10.002

Cerreta E.K., Frank I.J., Gray G.T., Trujillo C.P., Korzekwa D.A., Dougherty L.M. The influence of microstructure on the mechanical response of copper in shear. Mater. Sci. Eng. A, 2009, vol. 501, pp. 207-219. https://doi.org/10.1016/j.msea.2008.10.029">https://doi.org/10.1016/j.msea.2008.10.029

Rittel D., Wang Z.G., Merzer M. Adiabatic shear failure and dynamic stored energy of cold work. Phys. Rev. Lett., 2006, vol. 96, 075502. https://doi.org/10.1103/PhysRevLett.96.075502">https://doi.org/10.1103/PhysRevLett.96.075502

Rittel D. A different viewpoint on adiabatic shear localization. J. Phys. Appl. Phys., 2009, vol. 42, 214009. https://doi.org/10.1088/0022-3727/42/21/214009">https://doi.org/10.1088/0022-3727/42/21/214009

Osovski S., Nahmany Y., Rittel D., Landau P., Venkert A. On the dynamic character of localized failure. Scripta Mater., 2012, vol. 67, pp. 693-695. http://dx.doi.org/10.1016/j.scriptamat.2012.07.001">http://dx.doi.org/10.1016/j.scriptamat.2012.07.001

Grady D.E. Properties of an adiabatic shear-band process zone. J. Mech. Phys. Solid., 1992, vol. 40, pp. 1197-1215. https://doi.org/10.1016/0022-5096(92)90012-Q">https://doi.org/10.1016/0022-5096(92)90012-Q

Grady D.E., Kipp M.E. The growth of unstable thermoplastic shear with application to steady-wave shock compression in solids. J. Mech. Phys. Solid., 1987, vol. 35, pp. 95-119. https://doi.org/10.1016/0022-5096(87)90030-5">https://doi.org/10.1016/0022-5096(87)90030-5

Nesterenko V.F., Meyers M.A., Wright T.W. Self-organization in the initiation of adiabatic shear bands. Acta Mater., 1998, vol. 46, pp. 327-340. https://doi.org/10.1016/S1359-6454(97)00151-1">https://doi.org/10.1016/S1359-6454(97)00151-1

Nesterenko V.F., Xue Q., Meyers M.A. Self-organization of shear bands in Ti, Ti-6%Al-4%V, and 304 stainless steel. J. Phys. IV France, 2000, vol. 10, pp. Pr9-269-Pr9-274. https://doi.org/10.1051/jp4:2000945">https://doi.org/10.1051/jp4:2000945

Xue Q., Meyers M.A., Nesterenko V.F. Self-organization of shear bands in titanium and Ti-6Al-4V alloy. Acta Mater., 2002, vol. 50, pp. 575-596. http://dx.doi.org/10.1016/S1359-6454(01)00356-1">http://dx.doi.org/10.1016/S1359-6454(01)00356-1

Marchand A., Duffy J. An experimental study of the formation process of adiabatic shear bands in a structural steel. J. Mech. Phys. Solid., 1988, vol. 36, pp. 251-283. https://doi.org/10.1016/0022-5096(88)90012-9">https://doi.org/10.1016/0022-5096(88)90012-9

Giovanola J.H. Adiabatic shear banding under pure shear loading. Part I: direct observation of strain localization and energy dissipation measurements. Mech. Mater., 1988, vol. 7, pp. 59-71. https://doi.org/10.1016/0167-6636(88)90006-3">https://doi.org/10.1016/0167-6636(88)90006-3

Yang Y., Zheng H.G., Shi Z.J., Zhang Q.M. Effect of orientation on self-organization of shear bands in 7075 aluminum alloy. Mater. Sci. Eng. A, 2011, vol. 528, pp. 2446-2453. http://dx.doi.org/10.1016/j.msea.2010.12.050">http://dx.doi.org/10.1016/j.msea.2010.12.050

Mott N.F., Jones H. The theory of the properties of metals and alloys. Dover Publications, 1958. 326 p.

Batra R.C., Chen L. Effect of viscoplastic relations on the instability strain, shear band initiation strain, the strain corresponding to the minimum shear band spacing, and the band width in a thermoviscoplastic material. Int. J. Plast., 2001, vol. 17, pp. 1465-1489. https://doi.org/10.1016/S0749-6419%2801%2900004-3">https://doi.org/10.1016/S0749-6419%2801%2900004-3

Johnson G.R., Cook W.H. Proc. of the 7th Int. Symp. on Ballistics. Hague, Netherlands, April 19-21, 1983. P. 541-547.

Daridon L., Oussouaddi O., Ahzi S. Influence of the material constitutive models on the adiabatic shear band spacing: MTS, power law and Johnson-Cook models. Int. J. Solid. Struct., 2004, vol. 41, pp. 3109-3124. http://dx.doi.org/10.1016/j.ijsolstr.2004.01.008">http://dx.doi.org/10.1016/j.ijsolstr.2004.01.008

Follansbee P.S., Kocks U.F. A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable. Acta Metall., 1988, vol. 36, pp. 81-93. https://doi.org/10.1016/0001-6160(88)90030-2">https://doi.org/10.1016/0001-6160(88)90030-2

Naimark O.B. Collective properties of defects ensembles and some nonlinear problems of plasticity and fracture. Phys. Mesomech. – Physical mesomechanics, 2003, vol. 6, no. 4, pp. 39-63.

Naimark O.B. Defect-induced transitions as mechanisms of plasticity and failure in multifield continua. Advances in multifield theories of continua with substructure, ed. G. Capriz, P. Mariano. Boston, Birkhäuser, 2004. P. 75-114. https://doi.org/10.1007/978-0-8176-8158-6_4">https://doi.org/10.1007/978-0-8176-8158-6_4

Naimark O.B., Bayandin Yu.V., Sokovikov M.A., Plekhov O.A., Uvarov S.V., Bannikov M.V., Chudinov V.V. Specimen for shear test (variants) and test method for it. RF Patent No 2011,114,711/28, Byull. Izobret., 20 May 2013.

Sokovikov M., Bilalov D., Oborin V., Chudinov V., Uvarov S., Bayandin Y., Naimark O. Structural mechanisms of formation of adiabatic shear bands. Frattura ed Integrita Strutturale, 2016, vol. 38, pp. 296-304. https://doi.org/10.3221/IGF-ESIS.38.40">https://doi.org/10.3221/IGF-ESIS.38.40

Bilalov D.A., Sokovikov M.A., Chudinov V.V., Oborin V.A., Bayandin Yu.V., Terekhina A.I., Naimark O.B. Numerical simulation and experimental study of plastic strain localization under the dynamic loading of specimens in conditions close to a pure shear. J. Appl. Mech. Tech. Phy., 2018, vol. 59, pp. 1179-1188. https://doi.org/10.1134/S0021894418070027">https://doi.org/10.1134/S0021894418070027

Froustey C., Naimark O.B., Panteleev I.A., Bilalov D.A., Petrova A.N., Lyapunova E.A. Multiscale structural relaxation and adiabatic shear failure mechanisms. Phys. Mesomech., 2017, vol. 20, pp. 31-42. https://doi.org/10.1134/S1029959917010039">https://doi.org/10.1134/S1029959917010039

Bilalov D.A., Bayandin Yu.V., Naimark O.B. Mathematical modeling of failure process of AlMg2.5 alloy during high- and very high cycle fatigue. Vychisl. mekh. splosh. sred – Computational continuum mechanics, 2018, vol. 11, no. 3, pp. 323‑334. https://doi.org/10.7242/1999-6691/2018.11.3.24">https://doi.org/10.7242/1999-6691/2018.11.3.24

Bilalov D.A., Sokovikov M.A., Chudinov V. V. Multiscale mechanisms of plastic strain localization in the process of target perforation. Deformatsiya i razrusheniye materialov, 2017, no. 5, pp. 43-47.

Bouchaud E. Scaling properties of cracks. J. Phys. Condens. Matter., 1997, vol. 9, pp. 4319-4344. https://doi.org/10.1088/0953-8984/9/21/002">https://doi.org/10.1088/0953-8984/9/21/002

Oborin V.A., Bannikov M.A., Naimark O.B., Sokovikov M.A., Bilalov D.A. Multiscale study of fracture in aluminum-magnesium alloy under fatigue and dynamic loading. Frattura ed Integrità Strutturale, 2015, vol. 34, pp. 479-483. https://doi.org/10.3221/IGF-ESIS.34.47">https://doi.org/10.3221/IGF-ESIS.34.47

Published

2019-09-30

Issue

Section

Articles

How to Cite

Sokovikov, M. A., Chudinov, V. V., Oborin, V. A., Uvarov, S. V., & Naimark, O. B. (2019). Study of localized shear fracture mechanisms in alloys under dynamic loading. Computational Continuum Mechanics, 12(3), 301-312. https://doi.org/10.7242/1999-6691/2019.12.3.26