Influence of material damage on Rayleigh wave propagation along half-space boundary

Authors

  • Artem Mikhaylovich Antonov Mechanical Engineering Research Institute RAS
  • Vladimir Ivanovich Erofeev Mechanical Engineering Research Institute RAS
  • Anna Viktorovna Leonteva Mechanical Engineering Research Institute RAS

DOI:

https://doi.org/10.7242/1999-6691/2019.12.3.25

Keywords:

damped surface wave, Rayleigh wave, half-space, damaged medium, complex dispersion equation, low-frequency dispersion

Abstract

At present mechanics of damaged media studying both the stress-strain state of media and the accumulation of damages in materials develops intensively. In this paper, for an isotropic elastic half-space with damage in the material, a self-consistent problem is formulated, which includes the dynamic equation of the theory of elasticity and the kinetic equation of damage accumulation. We suppose that damage is uniformly distributed in the medium material. The study of surface wave propagation along the free boundary of the damaged half-space is performed. The wave propagates horizontally and decays in vertical directions. We assume that along the third axis all processes are homogeneous. It is shown that in this case a self-consistent system with boundary conditions expressing the absence of stresses at the boundary of a half-space is reduced to a complex dispersion equation. It is noted that in the limiting case, when there is no damage in the material, the dispersion equation obtained is reduced to the classical dispersion equation for the Rayleigh wave in polynomial form; the surface wave propagates along the half-space boundary without dispersion and attenuation. If damage is present in the medium, the surface wave attenuates in the direction of propagation, and low-frequency disturbances have frequency-dependent dissipation and dispersion. It is shown that dispersion has the abnormal character. It is established that with a decrease in the damage coefficient value, in the high-frequency region, the value of the phase velocity increases, and the group velocity decreases. At low frequencies, both speeds increase with decreasing damage rate

Downloads

Download data is not yet available.
Supporting Agencies
Работа выполнена в рамках государственного задания на проведение фундаментальных научных исследований на 2013-2020 г. по теме № 0035-2014-0402 (госрегистрация №01201458047) и при поддержке Российского фонда фундаментальных исследований (проект № 18-08-00715-а).

References

Maugin G.A. The thermomechanics of plasticity and fracture. Cambridge University Press, 1992. 368 p.

Lemaitre J. A course on damage mechanics. Springer-Verlag, 1992. 229 p. https://doi.org/10.1007/978-3-662-02761-5">https://doi.org/10.1007/978-3-662-02761-5

Krajcinovic D. Damage mechanics. Elsevier, 1996. 774 p.

Kachanov L.M. Osnovy mekhaniki razrusheniya [Fundamentals of fracture mechanics]. Moscow, Nauka, 1974. 312 p.

Rabotnov Yu.N. Creep problems in structural members. North-Holland Publishing Company, 1969. 822 p.

Uglov A.L., Erofeev V.I., Smirnov A.N. Akusticheskiy kontrol’ oborudovaniya pri izgotovlenii i ekspluatatsii [Acoustic control of equipment during its manufacture and operation]. Moscow, Nauka, 2009. 280 p.

Erofeev V.I., Nikitina E.A. The self-consistent dynamic problem of estimating the damage of a material by an acoustic method. Acoust. Phys., 2010, vol. 56, pp. 584-587. https://doi.org/10.1134/S106377101004024X">https://doi.org/10.1134/S106377101004024X

Erofeev V.I., Nikitina E.A., Sharabanova A.V. Wave propagation in damaged materials using a new generalized continuum. Mechanics of generalized continua. One hundred years after the Cosserats, ed. G.A. Maugin, A.V. Metrikine. Springer, 2010. P. 143-148. https://doi.org/10.1007/978-1-4419-5695-8_15">https://doi.org/10.1007/978-1-4419-5695-8_15

Stulov A., Erofeev V. Frequency-dependent attenuation and phase velocity dispersion of an acoustic wave propagating in the media with damages. Generalized continua as models for classical and advanced materials, ed. H. Altenbach, S. Forest. Springer, 2016. P. 413-423. https://doi.org/10.1007/978-3-319-31721-2_19">https://doi.org/10.1007/978-3-319-31721-2_19

Erofeev V.I., Nikitina E.A. Localization of a strain wave propagating in damaged material. J. Mach. Manuf. Reliab., 2010, vol. 39, pp. 559-561. https://doi.org/10.3103/S1052618810060087">https://doi.org/10.3103/S1052618810060087

Erofeev V.I., Nikitina E.A., Smirnov S.I. Acoustoelasticity of damaged materials. Kontrol’. Diagnostika – ControlDiagnostics, 2012, no. 3, pp. 24-26.

Erofeev V.I., Nikitina E.A., Khazov P.A. Dispersion and attenuation of acoustic waves propagating in the damaged material. Privolzhskiy nauchnyy zhurnal – Privolzhsky Scientific Journal, 2014, no. 4, pp. 22-28.

Erofeev V.I., Nikitina E.A., Khazov P.A. Influence of material damage on evolution of an acoustic wave. Privolzhskiy nauchnyy zhurnal – Privolzhsky Scientific Journal, 2015, no. 2, pp. 32-41.

Erofeev V.I., Lisenkova E.E., Khazov P.A. Analysis of dispersion properties of elastic waves propagating in a damaged string on an elastic foundation. Privolzhskiy nauchnyy zhurnal – Privolzhsky Scientific Journal, 2016, no. 1, pp. 45-50.

Erofeev V.I., Lisenkova E.E. Excitation of waves by a load moving along a damaged one-dimensional guide lying on an elastic foundation. J. Mach. Manuf. Reliab., 2016, vol. 45, pp. 495-499. https://doi.org/10.3103/S1052618816060054">https://doi.org/10.3103/S1052618816060054

Erofeev V.I., Nikitina E.A., Khazov P.A. Vliyaniye povrezhdennosti materiala na dispersiyu, dissipatsiyu i nelineynost’ akusticheskikh voln [The impact of damage of the material on the dispersion, dissipation and nonlinearity of acoustic waves]. Vestnik nauchno-tekhnicheskogo razvitiya – Bulletin of scientific and technological development, 2016, no. 5(105), pp. 3-11.

 Erofeev V.I., Leonteva A.V., Malkhanov A.O. Influence of material damage on propagation of a longitudinal magnetoelastic wave in a rod. Vychisl. mekh. splosh. Sred – Computational Continuum Mechanics, 2018, vol. 11, no. 4, pp. 397-408. https://doi.org/10.7242/1999-6691/2018.11.4.30">https://doi.org/10.7242/1999-6691/2018.11.4.30

Erofeev V.I., Leontieva A.V., Malkhanov A.O., Shekoyan A.V. Nonlinear longitudinal magnetoelastic waves in a rod with account of damage in its material. Material Physics and Mechanics, 2018, vol. 35, pp. 44-52. http://dx.doi.org/10.18720/MPM.3512018_6">http://dx.doi.org/10.18720/MPM.3512018_6

Viktorov I.A. Zvukovyye poverkhnostnyye volny v tverdykh telakh [Sound surface waves in solids]. Moscow, Nauka, 1981. 287 p.

Gerasimov S.I., Erofeyev V.I., Soldatov I.N. Volnovyye protsessy v sploshnykh sredakh [Wave processes in continuous media]. Sarov, Izd-vo RFYaTs-VNIIEF, 2012. 258 p.

Erofeev V.I., Ilyakhinsky A.V., Nikitina E.A., Pakhomov P.A., Rodyushkin V.M. Ultrasonic sensing method for evaluating the limit state of metal structures associated with the onset of plastic deformation. Fiz. Mezomekh. – Physical Mesomechanics, 2019, vol. 22, no. 3, pp. 65-70. https://doi.org/10.24411/1683-805X-2019-13007">https://doi.org/10.24411/1683-805X-2019-13007

Published

2019-09-30

Issue

Section

Articles

How to Cite

Antonov, A. M., Erofeev, V. I., & Leonteva, A. V. (2019). Influence of material damage on Rayleigh wave propagation along half-space boundary. Computational Continuum Mechanics, 12(3), 293-300. https://doi.org/10.7242/1999-6691/2019.12.3.25