Fluid transport in Forchheimer porous medium with spatially varying porosity and permeability

Authors

  • Ramil’ Rifgatovich Siraev Perm National Research Polytechnic University

DOI:

https://doi.org/10.7242/1999-6691/2019.12.3.24

Keywords:

heterogeneous porous medium, mathematical model of fluid filtration, flow asymmetry, oscillating fluid motion, secondary averaged flow

Abstract

Filtration of incompressible fluid in a saturated heterogeneous porous medium is theoretically studied. A mathematical model is based on the Forchheimer equation with an additional term that takes into account the heterogeneity of the medium. The effect of spatially varying permeability and porosity on the filtration in a flat channel is numerically investigated. For simplicity, we make an assumption about the lack of correlation between porosity and permeability and take them as independent parameters of the medium. The results show that the spatial variations of permeability and porosity affect transport in porous media in different ways. In the first case, the fluid flowing around the areas with low permeability obeys the Forzheimer law. The structure of the hydrodynamic fields and the flow rate do not vary when the flow direction changes to the opposite. In the media with varying porosity, the flow asymmetry is observed: filtration rate in the direction of increasing porosity is greater than in the opposite direction. This difference can cause a secondary flow, which is illustrated by the problem studying filtration in a channel with a periodic flow rate. We consider the case when the external periodic action has a high frequency as compared to hydrodynamic times, which provides an application of the averaging procedure to the system. Equations that describe the averaged flow arising on the background of an oscillating motion are obtained. Secondary flow arises on the background of the oscillating motion under the action of the force which is represented as a term with porosity gradient in the equations of the averaged flow and can evolve even in the absence of a constant pressure drop. For one-dimensional flow, an analytical solution is obtained. The intensity of the averaged flow is determined by the permeability and porosity gradient of the medium, as well as by the amplitude and frequency of periodic loads.

Downloads

Download data is not yet available.
Supporting Agencies
Исследование выполнено при финансовой поддержке Правительства Пермского края (соглашение №C-26/174.2).

References

Nield D.A., Bejan A. Convection in porous media. Springer-Verlag, 2017. 988 p. https://doi.org/10.1007/978-3-319-49562-0">https://doi.org/10.1007/978-3-319-49562-0

Nield D.A., Kuznetsov A.V., Barletta A., Celli M. The onset of convection in a sloping layered porous medium: Effects of local thermal non-equilibrium and heterogeneity. Transp. Porous. Med., 2016, vol. 114, pp. 87-97. https://doi.org/10.1007/s11242-016-0728-5">https://doi.org/10.1007/s11242-016-0728-5

Nield D.A., Kuznetsov A.V., Barletta A., Celli M. Local thermal non-equilibrium and heterogeneity effects on the onset of double-diffusive convection in an internally heated and soluted porous medium. Transp. Porous. Med., 2015, vol. 109, pp. 393-409. https://doi.org/10.1007/s11242-015-0525-6">https://doi.org/10.1007/s11242-015-0525-6

Coutelieris F.A., Delgado J.M.P.Q. Transport processes in porous media. Springer-Verlag, 2012. 236 p. https://doi.org/10.1007/978-3-642-27910-2">https://doi.org/10.1007/978-3-642-27910-2

Multiphase flow handbook: 2nd edition, ed. C.T. Crowe, J.D. Schwarzkopf. Taylor&Francis, 2016. 1420 p.

van Duijn C.J., Cao X., Pop I.S. Two-phase flow in porous media: Dynamic capillarity and heterogeneous media. Transp. Porous. Med., 2016, vol. 114, pp. 283-308. https://doi.org/10.1007/s11242-015-0547-0">https://doi.org/10.1007/s11242-015-0547-0

Boussinot G., Apel M. Phase field and analytical study of mushy zone solidification in a static thermal gradient: From dendrites to planar front. Acta Mater., 2017, vol. 122, pp. 310-321. https://doi.org/10.1016/j.actamat.2016.09.053">https://doi.org/10.1016/j.actamat.2016.09.053

Alexandrov D.V., Alexandrova I.V., Ivanov A.A., Malygin A.P., Nizovtseva I.G. Nonlinear analysis of the stability of solidification with a mushy zone. Russ. Metall., 2014, vol. 2014, pp. 606-617. https://doi.org/10.1134/S0036029514080035">https://doi.org/10.1134/S0036029514080035

Zhang Y.H., Räbiger D., Eckert S. Solidification of pure aluminium affected by a pulsed electrical field and electromagnetic stirring. J. Mater. Sci., 2016, vol. 51, pp. 2153-2159. https://doi.org/10.1007/s10853-015-9525-8">https://doi.org/10.1007/s10853-015-9525-8

Bratsun D.A., De Wit A. Control of chemoconvective structures in a slab reactor. Tech. Phys., 2008, vol. 53, pp. 146-153. https://doi.org/10.1134/S1063784208020023">https://doi.org/10.1134/S1063784208020023

Bratsun D.A., Siraev R.R. Control of mixing in a continuous-flow microreactor with a varied gap width. Vestnik PGU. Fizika – Bulletin of Perm University. Physics, 2017, no. 4 (38), pp. 26-36. https://doi.org/10.17072/1994-3598-2017-4-26-36">https://doi.org/10.17072/1994-3598-2017-4-26-36

Ward J.C. Turbulent flow in porous media. Journal of the hydraulics division, 1964, vol. 90, no. 5, pp. 1-12.

Vafai K., Tien C.L. Boundary and inertia effects on flow and heat transfer in porous media. Int. J. Heat Mass Tran., 1981, vol. 24, pp. 195-203. https://doi.org/10.1016/0017-9310(81)90027-2">https://doi.org/10.1016/0017-9310(81)90027-2

Vafai K., Tien C.L. Boundary and inertia effects on convective mass transfer in porous media. Int. J. Heat Mass Tran., 1982, vol. 25, pp. 1183-1190. https://doi.org/10.1016/0017-9310(82)90212-5">https://doi.org/10.1016/0017-9310(82)90212-5

Hsu C.T., Cheng P. Thermal dispersion in a porous medium. Int. J. Heat Mass Tran., 1990, vol. 33, pp. 1587-1597. https://doi.org/10.1016/0017-9310(90)90015-M">https://doi.org/10.1016/0017-9310(90)90015-M

Whitaker S. The method of volume averaging. Springer Science & Business Media, 1999. 221 p. https://doi.org/10.1007/978-94-017-3389-2">https://doi.org/10.1007/978-94-017-3389-2

Siraev R.R., Yakushin V.I. Investigation of convection in a horizontal cylindrical layer of a saturated porous medium. Fluid Dyn., 2008, vol. 43, pp. 240-247. https://doi.org/10.1134/S0015462808020087">https://doi.org/10.1134/S0015462808020087

Siraev R.R. Filtration of incompressible fluid in a heterogeneous porous medium. Fundamental’nyye issledovaniya – Fundamental research, 2013, no. 11-3, pp. 451-455.

Kozeny J. Uber Kapillare Leitung der Wasser in Boden. Royal Academy of Science, Vienna, Proc. Class I, 1927, vol. 136, pp. 271-306.

Nayfeh A.H. Introduction to Perturbation Techniques. Wiley, 1981. 519 p.

Lyubimov D.V., Lyubimova T.P., Muratov I.D., Shishkina E.A. Vibration effect on convection onset in a system consisting of a horizontal pure liquid layer and a layer of liquid-saturated porous medium. Fluid Dyn., 2008, vol. 43, pp. 789-798. https://doi.org/10.1134/S001546280805013X">https://doi.org/10.1134/S001546280805013X

Published

2019-09-30

Issue

Section

Articles

How to Cite

Siraev, R. R. (2019). Fluid transport in Forchheimer porous medium with spatially varying porosity and permeability. Computational Continuum Mechanics, 12(3), 281-292. https://doi.org/10.7242/1999-6691/2019.12.3.24