Numerical investigation of the evolution of microstructure of nickel-based alloys during plastic working

Authors

  • Anatoliy Alekseyevich Rogovoy Institute of Continuous Media Mechanics UB RAS
  • Nelli Kamilevna Salikhova Institute of Continuous Media Mechanics UB RAS

DOI:

https://doi.org/10.7242/1999-6691/2019.12.3.23

Keywords:

hot plastic working, microstructure evolution, dynamic recrystallization, Johnson-Mehl-Avrami-Kolmogorov model, stress-strain and thermal states, free upsetting, nickel alloy

Abstract

The paper considers the process of hot plastic working of a large metal billet, which causes its upsetting to a dimension specified by the manufacturing technique and the average axial deformation of 32.5%. The billet was made of heat-resistant nickel alloy Waspalloy widely used in the aircraft industry. The structural condition of the deformed alloy and, consequently, its mechanical properties depend on many factors: the degree of deformation, the rate of deformation, recrystallization in the process of deformation. This generates a need for a comprehensive study of the plastic flow in the examined material and the influence of the deformation parameters on its characteristics. The paper presents the results of a numerical investigation of the deformation and temperature states of the billet that allowed us to analyze changes occurring in the structure of nickel alloy during plastic deformation at different upsetting rates (50 and 100 mm/s). The shape of billet lateral surface and the forces required to complete the process of free upsetting are calculated as well. The numerical simulation was performed by the finite element method using the DEFORM-2D/3D software package. The average grain size and the fraction of recrystallized grains in the body of the billet were determined based on the Johnson-Mehl-Avrami-Kolmogorov model (JMAK). The results of numerical modeling showed that the greatest change in the microstructure of the alloy occurs in the region of intense plastic strains. The upsetting rate of 100 mm/s leads to the formation of structure with finer grains compared to the structure formed at the upsetting rate of 50 mm/s.

Downloads

Download data is not yet available.

References

Gorelik S.S., Dobatkin S.V., Kaputkina L.M. Rekristallizatsiya metallov i splavov [Recrystallization of metals and alloys]. Moscow, MISIS, 2005. 432 p.

Hässner F. (ed.) Recrystallization of metallic materials. Dr. Riederer Verlag, 1978. 293 p.

Parshin V.S., Karamyshev A.P., Nekrasov I.I., Pugin A.I., Fedulov A.A. Prakticheskoye rukovodstvo k programmnomu kompleksu DEFORM-3D [A practical guide to the DEFORM-3D software package]. Ekaterinburg: UrFU, 2010. 266 p.

Semashko M.Yu., Sherkunov V.G., Chigintsev P.A. Modeling microstructure of metals, subjected to severe plastic deformation in the system DEFORM. Vestnik MGTU im. G.I. Nosova – Vestnik of Nosov Magnitogorsk State Technical University, 2013, no. 1, pp. 57-61.

DEFORMТМ Microstructure modeling lab. Scientific Forming Technologies Corporation, 2007. 7 p.

Ivanov K.M. (ed.) Prikladnaya teoriya plastichnosti [Applied theory of plasticity]. St. Petersburg, Politekhnika, 2011. 375 p.

Unksov E.P., Ovchinnikov A.G. (ed.) Teoriya plasticheskikh deformatsiy metallov [Theory of plastic deformations of metals]. Moscow, Mashinostroyeniye, 1983. 598 p.

Avrami M. Kinetics of phase change. I. General theory. J. Chem. Phys., 1939, vol. 7, pp. 1103-1112. https://doi.org/10.1063/1.1750380">https://doi.org/10.1063/1.1750380

Avrami M. Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. J. Chem. Phys., 1940, vol. 8, pp. 212–224. https://doi.org/10.1063/1.1750631">https://doi.org/10.1063/1.1750631

Avrami M. Kinetics of phase change. III. Granulation, phase change, and microstructure. J. Chem. Phys., 1941, vol. 9, pp. 177-184. https://doi.org/10.1063/1.1750872">https://doi.org/10.1063/1.1750872

Johnson W.A., Mehl R.F. Reaction kinetics in process of nucleation and growth. Trans. Am. Inst. Min. Met. Eng., 1939, vol. 135, pp. 416-442

Srolovitz D.J., Grest G.S., Anderson M.P. Computer simulation of grain growth – V. Abnormal grain growth. Acta Metall., 1985, vol. 33, pp. 2233-2247. https://doi.org/10.1016/0001-6160(85)90185-3">https://doi.org/10.1016/0001-6160(85)90185-3

An D., Pan S., Huang L., Dai T., Krakauer B., Zhu M. Modeling of ferrite-austenite phase transformation using a cellular automation model. ISIJ Int., 2014, vol. 54, pp. 422-429. https://doi.org/10.2355/isijinternational.54.422">https://doi.org/10.2355/isijinternational.54.422

Raabe D. Celluar automata in materials science with particular reference to recrystallization simulation. Ann. Rev. Mater. Res., 2002, vol. 32, pp. 53-76. https://doi.org/10.1146/annurev.matsci.32.090601.152855">https://doi.org/10.1146/annurev.matsci.32.090601.152855

Meccozi V.G., Eiken J., Santofimia M.J., Sietsma J. Phase field modeling of microstructural evolution during the quenching and partitioning treatment in low-allloy steels. Comput. Mater. Sci., 2016, vol. 112, part A, pp. 245-256. https://doi.org/10.1016/j.commatsci.2015.10.048">https://doi.org/10.1016/j.commatsci.2015.10.048

DEFORMТМ 3D Version 6.1 (sp2). User’s Manual. Scientific Forming Technologies Corporation, 2008. 415 p.

Alimov A.I., Voronezhskiy E.V. Matematicheskoye modelirovaniye evolyutsii mikrostruktury pokovki v protsesse termomekhanicheskoy obrabotki [Mathematical modeling of the evolution of the forging microstructure during thermomechanical processing]. Nauka i obrazovaniye – Science and Education, 2011, no. 8, 15 p.

Published

2019-09-30

Issue

Section

Articles

How to Cite

Rogovoy, A. A., & Salikhova, N. K. (2019). Numerical investigation of the evolution of microstructure of nickel-based alloys during plastic working. Computational Continuum Mechanics, 12(3), 271-280. https://doi.org/10.7242/1999-6691/2019.12.3.23