The effect of reverse MHD stirring regimes on the structure of a crystallizing aluminum alloy

Authors

  • Sergey Anatol’yevich Denisov Institute of Continuous Media Mechanics UB RAS
  • Veniamin Mikhaylovich Dolgikh Institute of Continuous Media Mechanics UB RAS
  • Stanislav Yur’yevich Khripchenko Institute of Continuous Media Mechanics UB RAS
  • Aleksandr Vladimirovich Shestakov Institute of Continuous Media Mechanics UB RAS
  • Ramil’ Rifgatovich Siraev Perm National Research Polytechnic University

DOI:

https://doi.org/10.7242/1999-6691/2019.12.3.22

Keywords:

MHD stirring, cylindrical crucible, travelling and rotating magnetic field, reverse regime, ingot crystalline structure, numerical modeling

Abstract

The effect of reverse MHD stirring regimes on the ingot structure and the hydrodynamics processes occurred during the crystallization of the aluminum alloy Ak7 in a cylindrical crucible was studied both experimentally and numerically. Physical experiments showed that with increasing intensity of the rotating magnetic field generating the toroidal flow of the metal the size of grains in the crystallized ingot decreases. The functional relation exhibiting a pronounced extremum between the grain size in the ingot structure and the reverse period of the rotating magnetic field was determined. Addition of the poloidal flow first causes the grain size to increase, but then this effect decreases because of the increased velocity of the poloidal flow. It was found that the relation between the grain size and the ingot hardness is rather weak. Hydrodynamic parameters that influence the ingot structure in the reverse MHD stirring regime were determined through numerical simulations. Analysis of the results indicates that the reversals have a strong effect on heat and mass transfer processes. In the range of 2 to 5 C, the energy of the vertical flow increases sharply, whereas in the experimentally studied period of reverse pulsations of the rotating magnetic field it decreases in monotone way. As this period increases, the kinetic energy of large-scale flows and the energy of turbulent pulsations increase monotonically.

Downloads

Download data is not yet available.
Supporting Agencies
Исследование выполнено в рамках проекта № 18-10-1-9 государственной программы УрО РАН 2018-2020 г. (Новые материалы и технологии). Работа поддержана грантом Министерства науки и образования РФ (№ 3.6990.2017/8.9).

References

Velikiy A.B., Kazakov A.S., Filippova V.P., Alekseyev A.G. Vliyaniye elektromagnitnogo peremeshivaniya na strukturu i khimicheskuyu neodnorodnost’ sortovoy nepreryvnolitoy zagotovki [The influence of electromagnetic mixing on the structure and chemical heterogeneity of high-grade continuous-cast billet]. Vestnik MGTU im. G.I. Nosova – Vestnik of Nosov Magnitogorsk State Technical University, 2007, no. 4, pp. 37-40.

Borisov V.G. A technology for production of shaped aluminium alloy components via the thixoforming technique. Problems and solutions. Tekhnologiya legkikh splavov – Technology of Light Alloys, 2016, no. 2, pp. 71-79.

Khripchenko S. Yu., Nikulin L.V., Dolgikh V.M., Denisov S.A. Structure and properties of aluminum-silicon alloy ingots, obtained by magnetic-dynamic influence. Tsvetnyye metally – Nonferrous Materials, 2014, no. 6, pp. 82-86.

Denisov S., Dolgikh V., Khripchenko S., Kolesnichenko I., Nikulin L. The effect of traveling and rotating magnetic fields on the structure of aluminum alloy during its crystallization in a cylindrical crucible. Magnetohydrodynamics, 2014, vol. 50, pp. 407-422. https://doi.org/10.22364/mhd.50.4.8">https://doi.org/10.22364/mhd.50.4.8

Dardik I., Kapusta A., Mikhailovich B., Golbraikh E., Lesin S., Branover H. US Patent No. WO/2004/058433 16 December 2002.

Branover H., Golbraikh E., Kapusta A., Mikhailovich B., Dardik I., Thompson R., Lesin S., Khavkin M. On the potentialities of intensification of electromagnetic stirring of melts. Magnetohydrodynamics, 2006, vol. 42, no. 2/3, pp. 291‑298.

Eckert S., Nikrityuk P.A., Räbiger D., Eckert K., Gerbeth G. Efficient melt stirring using pulse sequences of a rotating magnetic field: Part I. Flow field in a liquid metal column. Metall. and Materi. Trans. B, 2007, vol. 38, pp. 977-988. https://doi.org/10.1007/s11663-007-9096-4">https://doi.org/10.1007/s11663-007-9096-4

Willers B., Eckert S., Nikrityuk P.A., Räbiger D, Dong J., Eckert K., Gerbeth G. Efficient melt stirring using pulse sequences of a rotating magnetic field: Part II. Application to solidification of Al-Si alloys. Metall. and Materi. Trans. B, 2008, vol. 39, pp. 304-316. https://doi.org/10.1007/s11663-008-9126-x">https://doi.org/10.1007/s11663-008-9126-x

Räbiger D., Eckert S., Gerbeth G., Franke S., Czarske J. Flow structures arising from melt stirring by means of modulated rotating magnetic fields. Magnetohydrodynamics, 2012, vol. 48, no. 1, pp. 213-220.

Eckert S., Nikrityuk P.A., Willers B., Räbiger D., Shevchenko N., Neumann-Heyme H., Travnikov V., Odenbach S., Voigt A., Eckert K. Electromagnetic melt flow control during solidification of metallic alloys. Eur. Phys. J. Spec. Top., 2013, vol. 220, pp. 123-137. https://doi.org/10.1140/epjst/e2013-01802-7">https://doi.org/10.1140/epjst/e2013-01802-7

Published

2019-09-30

Issue

Section

Articles

How to Cite

Denisov, S. A., Dolgikh, V. M., Khripchenko, S. Y., Shestakov, A. V., & Siraev, R. R. (2019). The effect of reverse MHD stirring regimes on the structure of a crystallizing aluminum alloy. Computational Continuum Mechanics, 12(3), 263-270. https://doi.org/10.7242/1999-6691/2019.12.3.22