Nonlinear isobaric flow of a viscous incompressible fluid in a thin layer with permeable boundaries

Authors

  • Valentina Viktorovna Privalova Institute of Engineering Science UB RAS; Ural Federal University named after the first President of Russia B. N. Yeltsin
  • Evgeniy Yur’yevich Prosviryakov Institute of Engineering Science UB RAS; Ural Federal University named after the first President of Russia B. N. Yeltsin

DOI:

https://doi.org/10.7242/1999-6691/2019.12.2.20

Keywords:

exact solution, permeable boundaries, vertical vortex, counterflow, stagnation point, Navier slip condition

Abstract

A new exact solution of the Navier-Stokes equations system is investigated. This solution describes an isobaric three-dimensional nonlinear flow of a viscous incompressible fluid in an infinite horizontal layer with permeable boundaries. Permeable layer boundaries allow one to realize fluid suction or injection in a vertical direction. Thus, a generalization of the non-uniform layered Couette-type flow to the three-dimensional case is obtained. The announced exact solution belongs to the Lin class. The velocity field is a linear form with respect to two spatial horizontal coordinates with coefficients depending on the third (transverse) coordinate in this class. The obtained exact solution describes a three-dimensional flow of a vertically vortex fluid, which can be used to describe large-scale processes in oceanology and in atmospheric physics. The obtained exact solution describes a large-scale flow of a vertical vortex fluid in the thin layer approximation. Vertical twist in a non-rotating fluid arises due to the inclusion of inertial forces in the motion equations and the velocities inhomogeneous distribution on the upper non-deformable permeable boundary of the layer. A non-uniform velocity field is studied using the Navier slip condition on the lower boundary. Additionally, the case of equality to zero of the slip length (sticking condition) is analyzed. The velocity field is studied for an arbitrary value of the Navier parameter. The obtained exact solution allows one to describe the counterflows of a viscous incompressible fluid. The obtained solution is analyzed and the existence of stagnation points in the vertical vortex fluid flow in an infinite layer with permeable boundaries is shown. Only one stagnation point is recorded in the fluid flow, when the no-slip and Navier slip conditions at the lower boundary are realized. Thus, the obtained exact solutions of the Navier-Stokes equations describe a new angular momentum transfer mechanism in a fluid. This exact solution illustrates the existence of vertical vorticity in a non-rotating fluid. Vertical twist is induced by a non-uniform velocity field at the boundaries of the fluid layer.

Downloads

Download data is not yet available.
Supporting Agencies
Исследование выполнено при финансовой поддержке Российского научного фонда в части изучения нелинейных эффектов в вязких несжимаемых средах (грант 19-19-00571).

References

Aristov S.N., Knyazev D.V., Polyanin A.D. Exact solutions of the Navier-Stokes equations with the linear dependence of velocity components on two space variables. Theor. Found. Chem. Eng., 2009, vol. 43, pp. 642-662. https://doi.org/10.1134/S0040579509050066">DOI

Ovsyannikov L.V. Group analysis of differential equations. New York, Academic Press, 1982. 417 p.

Pukhnachev V.V. Group properties of the equations of navier-stokes in the planar case. PMTF – Journal of Applied Mechanics and Technical Physics, 1960, no. 1, pp. 83-90.

Andreev V.K., Gaponenko Ya.A., Goncharova O.N., Pukhnachev V.V. Mathematical models of convection. Berlin, Boston, De Gryuter Publ., 2012. 420 p. http://dx.doi.org/10.1515/9783110258592">DOI

Lin C.C. Note on a class of exact solutions in magneto-hydrodynamics. Arch. Rational Mech. Anal., 1957, vol. 1, pp. 391‑395. https://doi.org/10.1007/BF00298016">DOI

Sidorov A.F. Two classes of solutions of the fluid and gas mechanics equations and their connection to traveling wave theory. J. Appl. Mech. Tech. Phy., 1989, vol. 30, pp. 197-203. http://dx.doi.org/10.1007/BF00852164">DOI

Aristov S.N., Shvarts K.G. Vikhrevye techeniya advektivnoy prirody vo vrashchayushchemsya sloe zhidkosti [Vortical flows of the advective nature in a rotating fluid layer]. Perm, Perm State Univiversity, 2006. 155 p.

Aristov S.N., Prosviryakov E.Y. On laminar flows of planar free convection. Rus. J. Nonlin. Dyn., 2013, vol. 9, no. 4, pp. 651-657. http://dx.doi.org/10.20537/nd1304004">DOI

Aristov S.N., Prosviryakov E.Yu. A new class of exact solutions for three-dimensional thermal diffusion equations. Theor. Found. Chem. Eng., 2016, vol. 50, pp. 286-293. https://doi.org/10.1134/S0040579516030027">DOI

Knyazev D.V. Solving the motion equations of a viscous fluid with a nonlinear dependence between a velocity vector and some spatial variables. J. Appl. Mech. Tech. Phy., 2018, vol. 59, pp. 928-933. https://doi.org/10.1134/S0021894418050218">DOI

Prosviryakov E.Yu. New class of exact solutions of Navier-Stokes equations with exponential dependence of velocity on two spatial coordinates. Theor. Found. Chem. Eng., 2019, vol. 53, pp. 107-114. https://doi.org/10.1134/S0040579518060088">DOI

Gorshkov A.V., Prosviryakov E.Yu. Ekman convective layer flow of a viscous incompressible fluid. Izv. Atmos. Ocean. Phys., 2018, vol. 54, pp. 189-195. https://dx.doi.org/10.1134/S0001433818020081">DOI

Shtern V. Counterflows. Paradoxical fluid mechanics phenomena. Cambridge: Cambridge University Press, 2012. 470 p. http://dx.doi.org/10.1017/CBO9781139226516">DOI

Goncharova O.N., Hennenberg M., Rezanova E.V., Kabov O.A.Modeling of the convective fluid flows with evaporation in the two-layer system. Interfacial Phenomena and Heat Transfer, 2013, vol. 1, pp. 317-338. http://dx.doi.org/10.1615/InterfacPhenomHeatTransfer.v1.i4.20">DOI

Aristov S.N., Shvarts K.G. Vikhrevyye techeniya v tonkikh sloyakh zhidkosti [Vortical flows in thin fluid layers]. Kirov, VyatGU, 2011, 207 p.

Aristov S.N., Prosviryakov E.Yu. Inhomogeneous Couette flows. Rus. J. Nonlin. Dyn., 2014, vol. 10, no. 2, pp. 177-182. http://dx.doi.org/10.20537/nd1402004">DOI

Aristov S.N., Frik P.G. Dinamika krupnomasshtabnykh techeniy v tonkikh sloyakh zhidkosti [Dynamics of large-scale flows in thin liquid layers]. Preprint, Academy of Sciences S.S.S.R. Institute of Continuous Media Mechanics. Sverdlovsk, 1987. 47 p.

Aristov S.N., Frick P.G. Large-scale turbulence in thin layer of non-isothermal rotating fluid. Fluid Dyn., 1988, vol. 23, pp. 522-528. http://dx.doi.org/10.1007/BF01055074">DOI

Aristov S.N., Prosviryakov E.Yu. Unsteady layered vortical fluid flows. Fluid Dyn., 2016, vol. 51, pp. 148-154. http://dx.doi.org/10.1134/S0040579516030027">DOI

Shvarts K.G., Shklyaev V.A. Matematicheskoye modelirovaniye mezomasshtabnykh i krupnomasshtabnykh protsessov perenosa primesi v baroklinnoy atmosfere [Mathematical modeling of mesoscale and large-scale process of transfer of impurities in a baroclinic atmosphere]. Izhevsk, Izhevskiy institut komp’yuternykh issledovaniy, 2015. 156 p.

Berker R. Sur quelques cas d'intégration des equations du mouvement d'un fuide visquex incompressible [On some cases of integration of the equations of the movement of an incompressible visquex fluid]. PhD Dissertation in mathematics. Paris-Lille: the University of Lille, 1936. 169 p.

Shmyglevskii Yu.D. On isobaric plane flows of a viscous incompressible fluid. USSR Computational Mathematics and Mathematical Physics, 1985, vol. 25, no. 6, pp. 191-193. http://dx.doi.org/10.1016/0041-5553(85)90030-8">DOI

Aristov S.N., Privalova V.V., Prosviryakov E.Yu. Stationary nonisothermal Couette flow. Quadratic heating of the upper boundary of the fluid layer. Rus. J. Nonlin. Dyn., 2016, vol. 12, no. 2, pp. 167-178. http://dx.doi.org/10.20537/nd1602001">DOI

Goldstein S. Modern developments in fluid mechanics. Oxford, Oxford At The Olarendon Press, 1938. 409 p.

Neto C., Evans D.R., Bonaccurso E., Butt H.-J., Craig V.S.J. Boundary slip in Newtonian liquids: a review of experimental studies. Rep. Progr. Phys., 2005, vol. 68, pp. 2859-2897. http://dx.doi.org/10.1088/0034-4885/68/12/R05">DOI

Yankov V.I., Boyarchenko V.I., Pervadchuk V.P., Glot I.O., Shakirov N.V. Pererabotka voloknoobrazuyushchikh polimerov. Osnovy reologii polimerov i techeniye polimerov v kanalakh [Processing of fiber-forming polymers. Bases of polymer rheology and polymer flow in channels]. Moscow-Izhevsk, Regulyarnaya i khaoticheskaya dinamika, 2008. 264 p.

Navier С.L.M.H. M'emoire sur les Lois du Mouvement des Fluides. M'em. Acad. R. Sci. Inst. de France, 1822, vol. 2, no. 6, pp. 389-440.

Navier C.L.M.H. Mémoire sur les lois de l'équilibre et du mouvement des corps solides élastiques. M'em. Acad. R. Sci. Inst. de France, 1827, vol. 7, pp. 375-393.

Borzenko E.I., Diakova O.A., Shrager G.R. Studying the slip phenomenon for a viscous fluid flow in a curved channel. Vestn. Tom. gos. un-ta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics, 2014, no. 2(28), pp. 35-44.

Itoh S., Tanaka N., Tani A. The initial value problem for the Navier-Stokes equations with general slip boundary conditions in Holder spaces. J. Math. Fluid Mech., 2003, vol. 5, pp. 275-301. http://dx.doi.org/10.1007/s00021-003-0074-6">DOI

Beirão da Veiga Н. Regularity for Stokes and generalized Stokes systems under nonhomogeneous slip-type boundary conditions. Adv. Differ. Equat., 2004, vol. 9, pp. 1079-1114.

Fujita H. Non-stationary Stokes flows under leak boundary conditions of friction type. J. Comput. Math., 2001, vol. 19, no. 1, pp. 1-8.

Rajagopal K.R. On some unresolved issues in non-linear fluid dynamics. Russ. Math. Surv., 2003, vol. 58(2), pp. 319-330. http://dx.doi.org/10.1070/RM2003v058n02ABEH000612">DOI

Gol’dshtik М.А., Shtern V.N., Yavorskiy N.I. Vyazkiye techeniya s paradoksal’nymi svoystvami [Viscous flows with paradoxical properties]. Novosibirsk, Nauka, 1989. 336 p.

Privalova V.V., Prosviryakov E.Yu. Exact solutions for a Couette–Hiemenz creeping convective flow with linear temperature distribution on the upper boundary. Diagnostics, Resource and Mechanics of materials and structures, 2018, no. 2, pp. 92-109. http://dx.doi.org/10.17804/2410-9908.2018.2.092-109">DOI

Mehdizadeh A., Oberlack M. Analytical and numerical investigations of laminar and turbulent Poiseuille–Ekman flow at different rotation rates. Phys. Fluid., vol. 22, 105104. http://dx.doi.org/10.1063/1.3488039">DOI

Published

2019-06-30

Issue

Section

Articles

How to Cite

Privalova, V. V., & Prosviryakov, E. Y. (2019). Nonlinear isobaric flow of a viscous incompressible fluid in a thin layer with permeable boundaries. Computational Continuum Mechanics, 12(2), 230-242. https://doi.org/10.7242/1999-6691/2019.12.2.20