Method for calculating stress evolution in glass-metal composite taking into account structural and mechanical relaxation processes

Authors

  • Ol’ga Nikolayevna Lyubimova Far Eastern Federal University
  • Maksim Andreyevich Barbotko Far Eastern Federal University

DOI:

https://doi.org/10.7242/1999-6691/2019.12.2.19

Keywords:

glass-metal composite, mechanical stresses during glass annealing, structural and mechanical relaxation, glass transition, mathematical modeling

Abstract

Technological modes of annealing layered glass-metal composite material are investigated. A cylindrical glass-metal composite vessel with an internal glass cylinder is used as a model sample in the experimental studies of highly compressed fragile rocks mass. A mathematical model of the evolution of technological and residual stresses during its annealing is considered. The difficulty in modeling is due to the glass transition process and the elastic-plastic behavior of the metal. Structural and mechanical relaxation processes in glass are calculated using the Tula-Naariswami-Moynihan-Mazurin method, which is based on the concept of structural temperature, and the Boltzman-Volterra superposition principle. The dependence of viscosity and coefficient of linear temperature expansion on the structural temperature is taken into account. Elastic state in the stress space is limited by the surface of the Mises limit state for metal shell. In this paper, a finite-difference scheme for calculating structural changes and process stresses over the entire temperature treatment interval is proposed. To assess the accuracy of the developed calculation algorithm, we used an analytical solution of the problem with the Maxwell core in the absence of temperature-time analogy in glass and elastic deformation of the metal layer. Calculations of technological stresses in glass metal composite based on borosilicate glass and low carbon steel for various temperature regimes of annealing were carried out. The proposed mathematical model and calculation method can be used for evaluating residual stresses in the technology of applying glass coatings on metal pipes.

Downloads

Download data is not yet available.
Supporting Agencies
Исследование выполнено при финансовой поддержке гранта Министерства науки и высшего образования РФ №14.584.21.0034. Уникальный идентификатор соглашения RFMEFI58418X0034.

References

Pikul’ V.V. Effektivnost’ steklometallokompozita [Efficiency of glass-metal composite]. Perspektivnyye materialy, 2000, no. 6, pp. 63-65.

Frolova E.G. Steklyannyye pokrytiya na stal’nykh trubakh [Glass coatings on steel pipes]. “Steklo”: Byulleten’ NII stekla, 1961, no. 3, 36 p.

Lyubimova O.N., Morkovin A.V., Dryuk S.A. Features of welding zone structure between glass and steel in production technology of glass-metal composite. Materialovedenie – Materials Science, 2017, no. 4, pp. 3-7.

Tropin T.V., Schmelzer J.W., Aksenov V.L. Modern aspects of the kinetic theory of glass transition. Physics-Uspekhi, 2016, vol. 59, no. 1, pp. 42-66. https://doi.org/10.3367/UFNe.0186.201601c.0047">DOI

Alexandrov A.P, Lasurkin Yu. S. Softening temperature of polymers // Dokladi AS USSA. 1944. Т. XLIII, № 9. P. 396-399.

Shul’ts M.M., Mazurin O.V. Sovremennyye predstavleniya o stroyenii stekol i ikh svoystvakh [Modern ideas about the structure of glass and their properties]. Lenindrad, Nauka, 1988. 197 p.

Schmelzer J.W.P. Kinetic criteria of glass formation and the pressure dependence of the glass transition temperature. J. Chem. Phys., 2012, vol. 136, 074512. https://doi.org/10.1063/1.3685510">DOI

 Startsev Yu.K. Phenomenological description of the glass transition and structural relaxation processes // Fiziko-khimicheskiye aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of studying clusters, nanostructures and nanomaterials]. Tver’, Tver. gos. un-t, 2015. Vol. 7. Pp. 494-504.

Mazurin O.V. Otzhig spayev stekla s metallom [Annealing of soldering glass with metal]. Lenindrad, Energiya, 1980. 140 p.

Mazurin O.V., Startsev Yu.K., Khodyakovskaya R.Ya. Relaksatsionnaya teoriya otzhiga stekla i raschet na eye osnove rezhimov otzhiga [Relaxation theory of glass annealing and calculation of annealing modes based on it]. Moscow, MKhTI im. D.I. Mendeleyeva, 1987. 83 p

Startsev Yu.K. Relaksatsionnyye yavleniya v steklakh v intervale steklovaniya pri otzhige, ionnom obmene stekla s rasplavom soli i v spayakh [Relaxation phenomena in glasses in the glass transition range during annealing, ion exchange of glass with molten salt, and in junctions]. DSc Dissertation, Institute of Silicate Chemistry RAS, Saint Petersburg, 2001. 301 p.

 Mazurin O.V. Steklovaniye [Glass transition]. Lenindrad, Nauka, 1986. 158 p.

Tool A.Q. Relation between inelastic deformability and thermal expanshion of glass in its annealing range. J. Am. Ceram. Soc., 1946, vol. 29, no. 9, pp. 240-253. https://doi.org/10.1111/j.1151-2916.1946.tb11592.x">DOI

Narayanaswami O.S. A model of structural relaxation in glass. J. Am. Ceram. Soc., 1971, vol. 54, no. 10, pp. 491-498. https://doi.org/10.1111/j.1151-2916.1971.tb12186.x">DOI

Moynihan C.T., Macedo P.B., Montrose C.J., Montrose C.J., Gupta P.K., DeBolt M.A., Dill J.F., Dom B.E., Drake P.W., Easteal A.J., Elterman P.B., Moeller R.P., Sasabe H., Wilder J.A. Structural relaxation in vitreous material. Ann. New York Acad. Sci., 1976, vol. 279, pp. 15-35. https://doi.org/10.1111/j.1749-6632.1976.tb39688.x">DOI

Gonchukova N.O. Calculation of stresses in amorphous nickel–phosphorus coatings on metallic substrates. Glass Physics and Chemistry, 2004, vol. 30, pp. 356-358. https://doi.org/10.1023/B:GPAC.0000038597.05195.0c">DOI

Ratushnyak S.L. Strukturnaya relaksatsiya v amorfnykh materialakh i vliyaniye napryazheniy na prochnost’ kompozitsii “pokrytiye – podlozhka” [Structural relaxation in amorphous materials and the effect of stresses on the strength of the coating – substrate composition]. PhD Dissertation, Institute of Silicate Chemistry RAS, Saint Petersburg, 2008. 131 p.

Trufanov A.N., Lesnikova Yu.I., Trufanov N.A., Smetannikov O.Yu. Selection of a structural strength criterion for inhomogeneous silica rod on the basis of full-scale and computational experiments. Vychisl. mekh. splosh. sred – Computational Continuum Mechanics, 2016, vol. 9, no. 1, pp. 97-108. https://doi.org/10.7242/1999-6691/2016.9.1.9">DOI

Smetannikov O.Yu., Il’inykh G.V. Study of the thermomechanical behavior of the interface module of a fiber-optic gyroscope. J. Opt. Tech., 2014, vol. 81, pp. 397-402. https://doi.org/10.1364/JOT.81.000397">DOI

Matveenko V.P., Smetannikov O.Y., Trufanov N.A., Shardakov I.N. Models of thermomechanical behavior of polymeric materials undergoing glass transition. Acta Mech., 2012, vol. 223, pp. 1261-1284. DOI

Briard R., Heitz C., Barthel E. Crack bridging mechanism for glass strengthening by organosilane water-based coatings. J. Non Cryst. Solids, 2005, vol. 351, pp. 323-330. https://doi.org/10.1016/j.jnoncrysol.2004.11.004">DOI

Hand R.J., Ellis B., Whittle B.R., Wang F.H. Epoxy based coatings on glass: strengthening mechanisms. J. Non Cryst. Solids, 2003, vol. 315, pp. 276-287. https://doi.org/10.1016/S0022-3093(02)01611-3">DOI

Priller S., Frischat G.H., Pye L.D. Strengthening of glass through surface crystallization of β-spodumene ss. J. Non Cryst. Solids, 1996, vol. 196, pp. 144-149. https://doi.org/10.1016/0022-3093(95)00576-5">DOI

Pikul V.V., Goncharuk V.K., Maslennikova I.G. A cylindrical shell made of glass-metal composite. Appl. Mech. Mater., 2015, vol. 756, pp. 230-235. https://doi.org/10.4028/www.scientific.net/AMM.756.230">DOI

 Nemilov S.V. Opticheskoye materialovedeniye: Fizicheskaya khimiya stekla [Optical materials science: Physical chemistry of glass]. Saint Petersburg, SPbGU ITMO, 2009. 113 p.

Bartenev G.M., Sanditov D.S. Relaksatsionnyye protsessy v stekloobraznykh sistemakh [Relaxation processes in glassy systems]. Novosibirsk, Nauka, 1986. 240 p.

Lyubimov M.L. Spai stekla s metallom [Spray glass with metal]. Moscow, Energiya, 1968. 280 p.

Solonenko E.P. Modelirovaniye napryazhennogo sostoyaniya v steklometallokompozitnykh materialakh pri temperaturnoy obrabotke [Modeling the stress state in glass-metal composite materials during thermal processing]. PhD Dissertation, Far Eastern Federal University, Komsomolsk-on-Amur, 2017. 154 p.

Galanin M.P., Guzev M.A., Nizkaya T.V. Chislennoye resheniye zadachi termoplastichnosti c dopolnitel’nymi parametrami sostoyaniya [Numerical solution of the thermoplasticity problem with additional state parameters]. Preprint, Keldysh Institute of Applied Mathematics. Moscow, 2007. 20 p. (URL: https://www.keldysh.ru/papers/2007/prep08/prep2007_08.html">https://www.keldysh.ru/papers/2007/prep08/prep2007_08.html)

Birger I.A. Ostatochnyye napryazheniya [Residual stresses]. Moscow, MAShGIZ, 1963. 232 p.

Mazurin O.V., Strel’tsina M.V., Shvayko-Shvaykovskaya T.P. Svoystva stekol i stekloobrazuyushchikh rasplavov. T. 3. Ch. 1. Trekhkomponentnyye silikatnyye sistemy (Properties of glasses and glass-forming melts. Vol. 3. Part 1. Three-component silicate systems). Lenindrad, Nauka, 1977. 586 p.

Published

2019-06-30

Issue

Section

Articles

How to Cite

Lyubimova, O. N., & Barbotko, M. A. (2019). Method for calculating stress evolution in glass-metal composite taking into account structural and mechanical relaxation processes. Computational Continuum Mechanics, 12(2), 215-229. https://doi.org/10.7242/1999-6691/2019.12.2.19