On the stability of reinforced arches

Authors

  • Vladimir Nikolayevich Tarasov Institute of Physics and Mathematics FRC «Komi Scientific Center, Ural Branch, RAS»

DOI:

https://doi.org/10.7242/1999-6691/2019.12.2.18

Keywords:

stability, critical force, arch, ring, variational problem, nonlinear programming, one-sided constraints, bifurcation, quadratic form, eigenvalues, inextensible filaments

Abstract

This paper deals with the problems of stability of circular arches supported by inextensible threads that cannot withstand compressive forces. Both ends of the thread are attached to the axis of the arch so that the distance between the attachment points cannot increase during deformation. The problems of stability and supercritical behavior of elastic systems in the presence of unilateral restrictions on the movement lead to the need to study the bifurcation points of the equations or to find the parameters for which some variational problem with restrictions on the desired functions in the form of inequalities has a non-unique solution. In the numerical study, this problem is reduced to finding and studying the bifurcation points of solutions to a nonlinear programming problem. The problem of finding bifurcation points for solutions of nonlinear programming problems is reduced to the problem of identification of conditional positive definiteness of quadratic forms on cones. There are criteria of conditional positive definiteness of quadratic forms on cones in the important special case, when the cone is a positive orthant in Euclidean space. Their application poses the necessity to calculate a large number of determinants, which is computationally extremely inefficient, although in the case of a small number of variables, they offer promise for solving Lyapunov stability problems. The paper proposes and justifies the method of searching for options to solve the problem of nonconvex quadratic programming that arises during the study of the stability of elastic unilateral restrictions on the movement. The results can be used in the design of arches and arch systems to improve their bearing capacity.

Downloads

Download data is not yet available.

References

Panagiotopulos P. Neravenstva v mekhanike i ikh prilozheniya. Vypuklyye i nevypuklyye funktsii energii [Inequalities in mechanics and their applications. Convex and non-convex energy function]. Moscow, Mir, 1989. 494 p.

Dyuvo G., Lions Zh.-L. Neravenstva v mekhanike i fizike [Inequalities in mechanics and physics]. Moscow, Nauka, 1980. 382 p.

Novozhilov V.V. Osnovy nelineynoy teorii uprugosti [Fundamentals of the nonlinear theory of elasticity]. Moscow, Gostekhizdat, 1948. 211 p.

Vol'mir А.S. Ustoychivost’ deformiruyemykh sistem [Stability of deformable systems]. Moscow, Nauka, 1967. 984 p.

Perel'muter A.V., Slivker V.I. Ustoychivost’ ravnovesiya konstruktsiy i rodstvennyye problemy [Stability of the structures equilibrium and related problems]. Moscow, SKAD SOFT, 2007. Vol. 1. 653 p.

Ziegler H. Principles of structural stability. Blaisdell Publishing Company, 1968. 150 p.

Feodos’yev V.I. Izbrannyye zadachi i voprosy po soprotivleniyu materialov [Selected problems of andquestions in strength of materials]. Moscow, Nauka, 1967. 376 p.

Mikhailovskii E.I., Tarasov V.N., Kholmogorov D.V. Post-critical behaviour of a longitudinally compressed rod for rigid limitations on the deflection. J. Appl. Math. Mech., 1985, vol. 49, pp. 120-122. https://doi.org/10.1016/0021-8928(85)90139-X">DOI

Alfutov N.A., Eremichev A.N. Vliyaniye odnostoronnikh svyazey na ustoychivost’ tsilindricheskikh obolochek pri osevom szhatii [Influence of one-sided bonds on the stability of cylindrical shells under axial compression]. Raschety na prochnost’ [Strength calculations]. Moscow, Mashinostroyeniye, 1989. Pp. 179-180.

Tarasov V.N. Ob ustoychivosti uprugikh sistem pri odnostoronnikh ogranicheniyakh na peremeshcheniya [Stability of elastic systems under one-sided constraints on displacements]. Tr. IMM UrO RAN – Proc. Steklov Inst. Math., 2005, vol. 11, no. 1, pp. 177-188.

Tarasov V.N. Metody optimizatsii v issledovanii konstruktivno-nelineynykh zadach mekhaniki uprugikh sistem [Optimization methods in the study of constructive nonlinear problems of mechanics of elastic systems]. Syktyvkar, Komi NTs UrO RAN, 2013. 238 p.

Andryukova V.Yu. Some structurally nonlinear problems of stability of elastic systems under one-side-displacement constraints. Vychisl. mekh. splosh. sred – Computational Continuum Mechanics, 2014, vol. 7, no. 4, pp. 412-422. https://doi.org/10.7242/1999-6691/2014.7.4.39">DOI

Nikolai E.L. Trudy po mekhanike [Work on mechanics]. Moscow, Gostekhizdat, 1955. 584 p.

Dinnik A.N. Ustoychivost’ arok [Stability of arches]. Moscow: Gostekhizdat, 1946. 128 p.

Li Z., Zheng J., Chen Y. Nonlinear buckling of thin-walled FGM arch encased in rigid confinement subjected to external pressure. Eng. Struct., 2019, vol. 186, pp. 86-95. https://doi.org/10.1016/j.engstruct.2019.02.019">DOI

Dmitriev A.N., Semenov A.A., Lalin V.V. Stability of the equilibrium of elastic arches with a deformed axis. SUZIS – Construction of unique buildings and structures, 2018, no. 4(67), pp. 19-31. URL: http://unistroy.spbstu.ru/index_2018_67/2_67.pdf">http://unistroy.spbstu.ru/index_2018_67/2_67.pdf

Xu Y., Gui X., Zhao B., Zhou R. In-plane elastic stability of arches under a radial concentrated load. Engineering, 2014, vol. 6, pp. 572-583. http://dx.doi.org/10.4236/eng.2014.69058">DOI

Han Q., Cheng Y., Lu Y., Li T., Lu P. Nonlinear buckling analysis of shallow arches with elastic horizontal supports. Thin-Walled Structures, 2016, vol. 109, pp. 88-102. https://dx.doi.org/10.1016/j.tws.2016.09.016">DOI

Silveria R.A.M., Nogueira C.L., Goncalves P.B. A numerical approach for equilibrium and stability analysis of slender arches and rings under contact constraints. Int. J. Solid Struct., 2013, vol. 50, pp. 147-159. https://doi.org/10.1016/j.ijsolstr.2012.09.015">DOI

Hu C.-F., Pi Y.-L., Gao W., Li L. In-plane non-linear elastic stability of parabolic arches with different rise-to-span ratios. Thin-Walled Structures, 2018, vol. 129, pp. 74-84. https://doi.org/10.1016/j.tws.2018.03.019">DOI

Sapronov Yu.I. Finite-dimensional reductions of smooth extremal problems. Russ. Math. Surv., 1996. vol. 51, no. 1, pp. 97-127. https://doi.org/10.1070%2FRM1996v051n01ABEH002741">DOI

Kreps V.L. On quadratic forms non-negative over an octant. USSR Computational Mathematics and Mathematical Physics, 1984, vol. 24, pp. 105-109. https://doi.org/10.1016/0041-5553(84)90094-6">DOI

Rapoport L.B. Lyapunov stability and sign definiteness of a quadratic form in a cone. J. Appl. Math. Mech., 1986, vol. 50, pp. 515-520. https://doi.org/10.1016/0021-8928(86)90018-3">DOI

Zav’yalov Yu.S., Kvasov B.I., Miroshnichenko V.L. Metody splayn-funktsiy [Methods of spline-functions]. Moscow, Nauka, 1980. 352 p.

Published

2019-06-30

Issue

Section

Articles

How to Cite

Tarasov, V. N. (2019). On the stability of reinforced arches. Computational Continuum Mechanics, 12(2), 202-214. https://doi.org/10.7242/1999-6691/2019.12.2.18