A hyperbolic model of boiling liquid

Authors

  • Viktor Sergeyevich Surov South Ural State University

DOI:

https://doi.org/10.7242/1999-6691/2019.12.2.16

Keywords:

boiling liquid, hyperbolic model, nodal method of characteristics

Abstract

A model of a boiling liquid is presented, built on the basis of the single-speed two-temperature generalized equilibrium model of a mixture previously proposed by the author, which takes into account the forces of interfractional interaction. The liquid fraction is assumed to be incompressble. A characteristic analysis of the model equations is carried out and their hyperbolicity is shown. Relations for characteristic directions and differential relations holding along them are derived. An analytical formula for calculating the speed of sound in a boiling liquid is obtained. It is noted that the speed of sound in a liquid, when phase transitions are taken into account, turns out to be slightly less than Wood's formula gives. Calculation formulas are given for the iterative nodal method of characteristics, which is used to calculate the flow during the decay of an arbitrary discontinuity in a boiling liquid without taking into account interfractional heat exchange. In the calculations, it has been assumed that the phase transition in the boiling process occurs under the conditions of a superheated state, when the temperature of the liquid exceeds the saturation temperature. It is shown that taking into account the phase transformation leads to a significant increase in the vapor concentration in the unloading wave, as well as to a slight increase in both the velocity of the mixture and the pressure. The concentration of the vapor fraction behind the front of the shock jump decreases.

Downloads

Download data is not yet available.

References

Nigmatulin R.I. Dinamika mnogofaznykh sred [Dynamics of multiphase media]. Vols. 1, 2. Moscow, Nauka, 1987.

Gofman G.V., Kroshilin A.E., Nigmatulin B.I. Nonsteady wave emission of effervescing liquid from vessels. High Temp., 1981, vol. 19, pp. 897-905.

Downar-Zapolski P., Bilicky Z., Bolle L., Franco J. The non-equilibrium relaxation model for one-dimensional flashing liquid flow. Int. J. Multiphase Flow, 1996, vol. 22, pp. 473-483. https://doi.org/10.1016/0301-9322(95)00078-X">DOI

Alekseev M.V., Lezhnin S.I., Pribaturin N.A., Sorokin A.L. Generation of shockwave and vortex structures at the outflow of a boiling water jet. and A, 2014, vol. 21, pp. 763-766. https://doi.org/10.1134/S0869864314060122">DOI

Bolotnova R.Kh., Buzina V.A., Galimzyanov M.N., Shagapov V.Sh. Gidrodinamicheskiye osobennosti protsessov istecheniya vskipayushchey zhidkosti [Hydrodynamic features of efflux of boiling liquid]. i A – T and A, 2012, vol. 19, no. 6, pp. 719‑730.

Bolotnova R.Kh., Buzina V.A. Spatial modeling of the nonstationary processes of boiling liquid outflows from high pressure vessels. Vychisl. mekh. splosh. sred – Computational continuum mechanics, 2014, vol. 7, no. 4, pp. 343-352. https://doi.org/10.7242/1999-6691/2014.7.4.33">DOI

Surov V.S. One-velocity model of a heterogeneous medium with a hyperbolic adiabatic kernel. Comput. Math. And Math. Phys., 2008, vol. 48, pp. 1048-1062. https://doi.org/10.1134/s0965542508060146">DOI

Surov V.S. Hyperbolic model of a single-speed, heat-conductive mixture with interfractional heat transfer. High Temp., 2018, vol. 56, pp. 890-899. https://doi.org/10.1134/s0018151x1806024x">DOI

Surov V.S.Hyperbolic model of a one-velocity viscous heat-conducting medium. J. Eng. Phys. Thermophy., 2019, vol. 92, pp. 196-207. https://doi.org/10.1007/s10891-019-01922-w">DOI

Surov V.S.On a variant of the method of characteristics for calculating one-velocity flows of a multicomponent mixture. J. Eng. Phys. Thermophy., 2010, vol. 83, pp. 366-372. https://doi.org/10.1007/s10891-010-0353-z">DOI

Saurel R., Boivin P., Le Métayer O. A general formulation for cavitating, boiling and evaporating flows. COMPUT. FLUID., 2016, vol. 128, pp. 53-64. https://doi.org/10.1016/j.compfluid.2016.01.004">DOI

Wallis G.B. One-dimensional two-phase flow. Mcgraw-Hill Book Company, 1969. 408 P.

Nigmatulin R.I., Bolotnova R.Kh. Wide-range equation of state of water and steam: simplified form. High Temp., 2011, vol. 49, pp. 303-306. https://doi.org/10.1134/S0018151X11020106">DOI

Published

2019-06-30

Issue

Section

Articles

How to Cite

Surov, V. S. (2019). A hyperbolic model of boiling liquid. Computational Continuum Mechanics, 12(2), 185-191. https://doi.org/10.7242/1999-6691/2019.12.2.16