Computational NAMI-DANCE complex in the problem of tsunami waves

Authors

  • Andrey Ivanovic Zaytsev Special Research Bureau for Automation of Marine Researches FEB RAS; Nizhny Novgorod State Technical University n.a. R.E. Alekseev
  • Andrey Aleksandrovich Kurkin Nizhny Novgorod State Technical University n.a. R.E. Alekseev
  • Efim Naumovich Pelinovsky Special Research Bureau for Automation of Marine Researches FEB RAS; Nizhny Novgorod State Technical University n.a. R.E. Alekseev; Federal Research Center “Institute of Applied Physics RAS”; National Research University “Higher School of Economics”
  • Ahmet Yalciner Middle East Technical University

DOI:

https://doi.org/10.7242/1999-6691/2019.12.2.14

Keywords:

tsunami, underwater earthquake, submarine landslides, meteotsunami, shallow-water equations, long wave theory, numerical methods for hyperbolic equations, Leap-Frog method, tsunami action

Abstract

Mathematical models applicable to the simulation of generation and propagation of tsunamis of different origin - underwater earthquakes, submarine landslides, meteotsunami - are described. The basic model is based on the well-known nonlinear shallow-water theory and its dispersion generalizations in two horizontal dimensions. Long wave dispersion related to the finiteness of water depth increases the order of PDE and leads to serious computational problems. We replace the physical dispersion with the numerical one using specific conditions for spatial and temporal steps. The numerical scheme is based on a Leap-Frog method. The equations are solved in spherical coordinates fixed to the rotating Earth by taking into account dissipative effects in the near-bottom layer with the use of NAMI-DANCE code. For tsunami waves of seismic origin, the initial conditions for hydrodynamic equations are found from the Okada solution of elastic equations describing the development of an earthquake. In the case of meteotsunami, atmospheric factors are modeled by the external forces. The process of generation of tsunami waves of landslide origin is analyzed in the framework of a two-layer model with lower viscous layer modeling the motion of a submarine landslide. There are two kinds of boundary conditions: free wave passage through open boundaries (in straits, etc.) using linear shallow-water equations, and a full reflection on the coast or in near-shore area. The NAMI-DANCE code has been verified with several benchmarks. The difficulties of tsunami modelling associated with the lack of accuracy in the bottom bathymetry and land topography are mentioned. The use of the developed code for the analysis of tsunami action on the coasts and constructions is discussed.

Downloads

Download data is not yet available.
Supporting Agencies
Исследование выполнено в рамках базовой части государственного задания в сфере научной деятельности (Задания № 5.4568.2017/6.7 и 5.5176.2017/8.9) при финансовой поддержке Совета по грантам Президента РФ для поддержки ведущих научных школ (грант НШ-2685.2018.5) и РФФИ (проекты № 17-05-00067 и 18-05-80019).

References

Omira R., Dogan G.G., Hidayat R., Husrin S., Prasetya G., Annunziato A., Proietti C., Probst P., Paparo M.A., Wronna M., Zaytsev A., Pronin P., Giniyatullin A., Putra P.S., Hartanto D., Ginanjar G., Kongko W., Pelinovsky E., Yalciner A.C. The September 28th, 2018, tsunami in Palu-Sulawesi, Indonesia: A post-event field survey. Pure Appl. Geophys., 2019, vol. 176, pp. 1379-1395. https://doi.org/10.1007/s00024-019-02145-z">DOI

Giachetti T., Paris R., Kelfoun K., Ontowirjo B. Tsunami hazard related to a flank collapse of Anak Krakatau Volcano, Sunda Strait, Indonesia. Geological Society, London, Special Publications,2012, vol. 361, pp. 79-90. https://doi.org/10.1144/SP361.7">DOI

Chubarov D.L. Ledovoye tsunami v vodokhranilishche Bureyskoy [Ice tsunami in the Bureiskaya HPP basin], available at: http://sdc.esemc.nsc.ru/node/102">http://sdc.esemc.nsc.ru/node/102 (accessed 28 March 2019).

Meteotsunami floods islands of Mallorca and Menorca, Spain, available at: http://scienceglobalnews.com/environment/meteotsunami-floods-islands-of-mallorca-and-menorca-spain">http://scienceglobalnews.com/environment/meteotsunami-floods-islands-of-mallorca-and-menorca-spain (accessed 28 March 2019).

Stoker J.J. Water waves. The mathematical theory with applications. Interscience Publishers. Inc., 1957. 609 p.

Kochin N.E., Kibel’ I.A., Rose N.V. Theoretical hydromechanics. Interscience Publ., 1964. 577 p.

Sretenskiy L.N. Teoriya volnovykh dvizheniy zhidkosti [Theory of fluid wave motion]. Moscow, Nauka, 1977. 816 p.

Loytsyanskiy L.G.Mekhanika zhidkosti i gaza[Mechanics of fluid and gas]Moscow, Drofa, 2003. 840 p.

Murty T.S. Seismic sea waves. Tsunamis. Ottawa: Department of fisheries and the environment fisheries and marine service, 1977. 337 p.

Marchuk A.G., Chubarov L.B., Shokin Yu.I. Chislennoye modelirovaniye voln tsunami [Numerical modeling of tsunami waves]. Novosibirsk, Nauka, 1983. 175 p.

Shokin Yu.I., Chubarov L.B., Marchuk A.G., Simonov K.V. Vychislitel’nyy eksperiment v probleme tsunami [Computational experiment in tsunami problem]. Novosibirsk, Nauka, 1989. 168 p.

Pelinovskiy E.N. Gidrodinamika voln tsunami [Hydrodynamics of tsunami waves]. Nizhny Novgorod, IPF RAN, 1996. 276 p.

Levin B., Nosov M. Physics of tsunamis. Springer, 2009. 338 p.

Synolakis C., Bernard E.N., Titov V.V., Kânoğlu U., González F.I. Validation and verification of tsunami numerical models. Pure Appl. Geophys., 2008, vol. 165, pp. 2197-2228. https://doi.org/10.1007/s00024-004-0427-y">DOI

Liu P.L.-F., Yeh H., Synolakis C. Benchmark problems. Advanced numerical models for simulating tsunami waves and runup, ed. P.L.-F. Liu, H. Yeh, C. Synolakis. Singapore, World Sci. Publ., 2008. P. 223-230.

Lynett P.J., Montoya L., Gately K. et al. Inter-model analysis of tsunami-induced coastal currents. Ocean Model., 2017, vol. 114, pp. 14-32. https://doi.org/10.1016/j.ocemod.2017.04.003">DOI

http://namidance.ce.metu.edu.tr/">http://namidance.ce.metu.edu.tr/ (accessed 28 March 2019).

Vol’tsinger N.E., Klevanyy K.A., Pelinovskiy E.N. Dlinnovolnovaya dinamika pribrezhnoy zony [Long-wave dynamics of the coastal zone]. Leningrad, Gidrometeoizdat, 1989. 272 р.

Choi J., Kwon K.K., Yoon S.B. Tsunami inundation simulation of a built-up area using equivalent resistance coefficient. Coast. Eng. J., 2012, vol. 54, pp. 1250015–1-1250015–25. https://doi.org/10.1142/S0578563412500155">DOI

Kulikov E.A., Gusiakov V.K., Ivanova A.A., Baranov B.V. Numerical tsunami modeling and the bottom relief. Moscow University Physics Bulletin, 2016, vol. 71, no. 6, pp. 527-536. https://doi.org/10.3103/S002713491605012X">DOI

Ivanova A.A., Kulikov E.A., Fain I.V. On modelling 2006, 2007 Simushir tsunamis in the central Kuril region. Fundamentalnaya i prikladnaya gidrofizika, 2017, vol. 10, no. 3, pp. 56-64. https://doi.org/10.7868/S2073667317030042">DOI

Dilmen D.I., Kemec S., Yalciner A.C., Düzgün S., Zaytsev A. Development of a tsunami inundation map in detecting tsunami risk in gulf of Fethiye, Turkey. Pure Appl. Geophys., 2015, vol. 172, pp. 921-929. https://doi.org/10.1007/s00024-014-0936-2">DOI

Goto C., Ogawa Y., Shuto N., Imamura F. IUGG/IOC TIME Project: Numerical method of tsunami simulation with the leap-frog scheme.Manuals and guides. Paris: Intergovernmental Oceanographic Commission of UNESCO, 1997. No. 35. 126 p.

Nosov M.A. Applicability of long-wave approximation to the description of tsunami dynamics. Uchenyye zapiski fizicheskogo fakul’teta Moskovskogo universiteta – Memoirs of the Faculty of Physics, Lomonosov Moscow State University, 2017, no. 4, 1740503.

Peregrine D.H. Long waves on a beach. J. Fluid Mech., 1967, vol. 27, pp. 815-827. https://doi.org/10.1017/S0022112067002605">DOI.

Khakimzyanov G., Dutykh D., Fedotova Z., Mitsotakis D. Dispersive shallow water wave modelling. Part I: Model derivation on a globally flat space. Commun. Comput. Phys., 2018, vol. 23, pp. 1-29. https://doi.org/10.4208/cicp.OA-2016-0179a">DOI

Pelinovskiy E.N. Nelineyno-dispersionnaya teoriya voln tsunami: vzglyad posle katastroficheskogo tsunami v Indiyskom okeane [Nonlinear-dispersion theory of tsunami waves: A look after the catastrophic tsunami in the Indian Ocean]. Nelineynye volny’ 2006 [Nonlinear waves’ 2006]. Nizhny Novgorod, IPF RAN, 2007, pp. 393-407.

Fedotova Z.I., Khakimzyanov G.S., Gusev O.I. History of the development and analysis of numerical methods for solving nonlinear dispersive equations of hydrodynamics. I. One-dimensional models problems. ZhVT – Computational technologies, 2015, vol. 20, no. 5, pp. 120-156.

Shokin Yu.I., Fedotova Z.I., Khakimzyanov G.S. Hierarchy of nonlinear models of the hydrodynamics of long surface waves. Dokl. Phys., 2015, vol. 60, no. 5, pp. 224-228. https://doi.org/10.1134/S1028335815050079">DOI

Kirby J.T., Wei G., Chen Q. Kennedy A.B., Dalrymple R.A. Funwave 1.0. fully nonlinear boussinesq wave model – Documentation and user's manual. University of Delaware, 1998. 80 p.

Cheung K.F., Phadke A.C., Wei Y., Rojasa R., Douyere Y.J.-M., Martino C.D., Houston S.H., Liu P.L.-F., Lynett P.J., Dodd N., Liao S., Nakazaki E. Modeling of storm-induced coastal flooding for emergency management. Ocean Eng., 2003, vol. 30, pp. 1353-1386. https://doi.org/10.1016/S0029-8018(02)00133-6">DOI

Lovholt F., Pedersen G. Instabilities of Boussinesq models in nonuniform depth. Int. J. Numer. Meth. Fluids, 2009, vol. 61, pp. 606-637. https://doi.org/10.1002/fld.1968">DOI

Yoon S.B. Propagation of distant tsunamis over slowly varying topography. J. Geophys. Res., 2002, vol. 107, no. C10, pp. 4–1- 4–11. https://doi.org/10.1029/2001JC000791">DOI

Yoon S.B., Lim C.H., Choi J. Dispersion-correction finite difference model for simulation of transoceanic tsunamis. Terr. Atmos. Ocean. Sci., 2007, vol. 18, pp. 31-53.

Velioglu D., Kian R., Yalciner A.C., Zaytsev A. Performance assessment of NAMI DANCE in tsunami evolution and currents using a benchmark problem. J. Mar. Sci. Eng., 2016, vol. 4, 49. http://dx.doi.org/10.3390/jmse4030049">DOI

Kian R., Horrillo J., Zaytsev A., Yalciner A.C. Capturing physical dispersion using a nonlinear shallow water model. J. Mar. Sci. Eng., 2018, vol. 6, 84. http://dx.doi.org/10.3390/jmse6030084">DOI

Okada Y. Surface deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am., 1985, vol. 75, pp. 1135-1154.

Lobkovskiy L.I., Baranov B.V. Klavishnaya model’ sil’nykh zemletryaseniy v ostrovnykh dugakh i aktivnykh kontinental’nykh okrainakh [Keyboard model of strong earthquakes in island arcs and active continental margins]. DANSSSR – Reports of the Academy of sciences of the USSR, 1984, vol. 275, no. 4, pp. 843-847.

Lobkovsky L.I., Rabinovich A.B., Kulikov E.A., Ivashchenko A.I., Fine I.V., Thomson R.E., Ivelskaya T.N., Bogdanov G.S. The Kuril Earthquakes and tsunamis of November 15, 2006, and January 13, 2007: Observations, analysis, and numerical modelling. Oceanology, 2009, vol. 49, no. 2, pp. 166-181. https://doi.org/10.1134/S0001437009020027">DOI

Zaytsev A., Kostenko I., Kurkin A., Pelinovsky E., Yalçiner A.C. The depth effect of the earthquakes on tsunami heights in the Okhotsk Sea. Turk. J. Earth. Sci., 2016, vol. 25, pp. 289-299. https://doi.org/10.3906/yer-1509-6">DOI

Aytore B., Yalciner A.C., Zaytsev A., Cankaya Z.C., Suzen M.L. Assessment of tsunami resilience of Haydrapasa port in the Sea of Marmara by high resolution numerical modeling. Earth, Planets and Space, 2016, vol. 68, pp. 139-150. https://doi.org/10.1186/s40623-016-0508-z">DOI

Zaytsev A., Kostenko I., Kurkin A., Pelinovsky E., Pararas-Carayannis G. Manifestation of the 1963 Urup tsunami on Sakhalin: observations and modeling. Science of Tsunami Hazards, 2017, vol. 36, pp. 145-166.

Kostenko I.S., Zaytsev A.I., Minaev D.D., Pelinovsky E.N., Kurkin A.A., Oshmarina O.E. The Moneron Tsunami of September 5, 1971, and Its Manifestation on the Sakhalin Island Coast: Numerical Simulation Results. Izv. Atmos. Ocean. Phys., 2018, vol. 54, pp. 1-9. https://doi.org/10.1134/S0001433818010085">DOI

Tufekci D., Suzen M.L., Yalciner A.C., Zaytsev A. Revised MeTHuVA method for assessment of tsunami human vulnerability of Bakirkoy district, Istanbul. Nat. Hazards, 2018, vol. 90, pp. 943-974. https://doi.org/10.1007/s11069-017-3082-1">DOI

Sassa S., Takagawa T. Liquefied gravity flow-induced tsunami: first evidence and comparison from the 2018 Indonesia Sulawesi earthquake and tsunami disasters. Landslides, 2019, vol. 16, pp. 195-200. https://doi.org/10.1007/s10346-018-1114-x">DOI

Yalciner A.C., Zaytsev A., Aytore B., Insel I., Heidarzadeh M., Kian R., Imamura F. A possible submarine landslide and associated tsunami at the northwest Nile Delta, Mediterranean Sea. Oceanography, 2014, vol. 27, pp. 68-75. https://doi.org/10.5670/oceanog.2014.41">DOI

Imamura F., Imteaz M.A. Long waves in two layer: governing equations and numerical model. Science of Tsunami Hazards, 1995, vol. 13, pp. 3-24.

Pelinovsky E., Poplavsky A. Simplified model of tsunami generation by submarine landslides. Phys. Chem. Earth., 1996, vol. 21, no. 12, pp. 13-17. https://doi.org/10.1016/s0079-1946(97)00003-7">DOI

Kulikov E.A., Rabinovich A.B., Fain I.V., Bornhold B.D., Thomson R.E. Tsunami generation by landslides at the Pacific coast of North America and the role of tides. Oceanology, 1998, vol. 38, pp. 323-328.

Garagash I.A., Lobkovskii L.I., Kozyrev O.R., Mazova R.Kh. Generation and runup of tsunami waves at an submarine landslide. Oceanology, 2003,vol. 43, no. 2, pp. 173-181.

Beizel S.A., Khakimzyanov G.S., Chubarov L.B. Simulation of surface waves generated by an underwater landslide moving along a spatially irregular slope. ZhVT – Computational technologies, 2010, vol. 15, no. 3, pp. 39-51.

Park V.V. Modeling the evolution of three-layered Stokes flow and some geophysical applications. Vychisl. mekh. splosh. sred – Computational Continuum Mechanics, 2018, vol. 11, no. 3, pp. 275-287. https://doi.org/10.7242/1999-6691/2018.11.3.21">DOI

Pudasaini S.P., Hutter K. Avalanche Dynamics: Dynamics of Rapid Flows of Dense Granular Avalanches. Springer, 2007. 602 p.

Pattiaratchi C.B., Wijeratne E.M.S. Are meteotsunamis an underrated hazard? Phil. Trans. R. Soc. A, 2015, vol. 373, 20140377. https://doi.org/10.1098/rsta.2014.0377">DOI

Rabinovich A.B., Shepic J.Meteorological tsunami: What is that? Priroda, 2016, no. 1, pp. 12-26.

Sepic J., Vilibiс I., Rabinovich A.B., Monserrat S. Widespread tsunami-like waves of 23-27 June in the Mediterranean and Black Seas generated by high-altitude atmospheric forcing. Sci. Rep. UK, 2015, vol. 5, 11682. https://doi.org/10.1038/srep11682">DOI

Metin A.D., Pelinovsky E., Yalciner A.C., Zaytsev A., Ozyurt Tarakcioglu G., Yalciner B., Kurkin A. Proc. 13th Int. Conf. on the Mediterranean Coastal Environment. MEDCOAST 17, Mellieha, Malta, October 31-November 4, 2017. Vol. 2, pp. 1143-1154.

Antsyferov S.M., Kos’yan R.D. Vzveshennyye nanosy v verkhney chasti shel’fa [Suspended sediment at the upper shelf]. Moscow, Nauka, 1986. 223 p.

Nanayakkara K.I.U., Dias W.P.S. Fragility curves for structures under tsunami loading. Nat. Hazards, 2016, vol. 80, pp. 471-486. DOI

Ozer Sozdinler C., Yalciner А.С., Zaytsev А. Investigation of tsunami hydrodynamic parameters in inundation zones with different structural layouts. Pure Appl. Geophys., 2015, vol. 172, pp. 931-952. https://doi.org/10.1007/s00024-014-0947-z">DOI

Ozer Sozdinler C., Yalciner A.C., Zaytsev A., Suppasri A., Imamura F. Investigation of hydrodynamic parameters and the effects of breakwaters during the 2011 Great East Japan Tsunami in Kamaishi Bay. Pure Appl. Geophys., 2015, vol. 172, pp. 3473-3491. https://doi.org/10.1007/s00024-015-1051-8">DOI

Zaytsev A.I., Kurkin A.A., Pelinovsky E.N., Yalciner A., Kian R. Investigation of the influence of the Z-shape of the bay on sedimentation of bottom sediments under the impact of waves. Fundamentalnaya i prikladnaya gidrofizika, 2017, vol. 10, no. 3, pp. 73-77. https://doi.org/10.7868/S2073667317030066">DOI

Published

2019-06-30

Issue

Section

Articles

How to Cite

Zaytsev, A. I., Kurkin, A. A., Pelinovsky, E. N., & Yalciner, A. . (2019). Computational NAMI-DANCE complex in the problem of tsunami waves. Computational Continuum Mechanics, 12(2), 161-174. https://doi.org/10.7242/1999-6691/2019.12.2.14