Variational multiscale finite element methods for a nonlinear convection-diffusion-reaction equation
DOI:
https://doi.org/10.7242/1999-6691/2019.12.2.13Keywords:
convection-diffusion-reaction equation, stabialized finite element method, variational multiscale method, spurious oscillations of numerical solutionAbstract
This paper focuses on the development of finite element methods for solving a two-dimensional boundary value problem for a singularly perturbed time-dependent convection-diffusion-reaction equation. Solution to the problem can vary rapidly in thin layers. As a result, spurious oscillations in the solution occur if the standard Galerkin method is used. In multiscale finite element methods, the initial problem is split into grid-scale and subgrid-scale problems, which allows one to capture the features of the problem at a scale smaller than an element mesh size. In the study two methods are considered: VMM-ASA (Variational Multiscale Method with Algebraic Sub-scale Approximation) and RFB (Residual-Free Bubbles). In the first method, the subgrid problem is modeled by the residual of the grid equation and intrinsic time scales. In the second method, the subgrid problem is approximated by special functions. The grid and subgrid problems are formulated through a linearization procedure on the subgrid component applied to the initial problem. The computer implementation of the methods has been carried out using a commercial finite element package. The efficiency of the developed methods has been studied by solving a test boundary value problem for the nonlinear equation. Several values of the diffusion coefficient of the equation have been analyzed. On the basis of the numerical study, it has been shown that the multiscale methods allow one to increase the stability of a numerical solution and to decrease the quantity and amplitude of oscillations compared to the standard Galerkin method. In the case of a small diffusion coefficient, the developed methods can yield a satisfactory numerical solution on a sufficiently coarse mesh.
Downloads
References
Аziz Kh., Settari A. Petroleum reservoir simulation. London, Applied Science Publishers Ltd., 1979. 476 p.
Kostina А.А., Zhelnin М.S., Plekhov О.А. Study of oil filtration in porous media under the steam-assisted gravity drainage process. Vestnik Permskogo nauchnogo tsentra – Perm Scientific Center Journal, 2018, no. 3, pp. 6-16. https://doi.org/10.7242/1998-2097/2018.3.1">DOI
Vilarrasa V., Olivella S., Carrera J., Rutqvist J. Long term impacts of cold CO2 injection on the caprock integrity. Int. J. Greenh. Gas Con., 2014, vol. 24, pp. 1-13. https://doi.org/10.1016/j.ijggc.2014.02.016">DOI
Zhou M.M., Meschke G. A three‐phase thermo‐hydro‐mechanical finite element model for freezing soils. Int. J. Numer. Anal. Meth. Geomech., 2013, vol. 37, pp. 3173-3193. https://doi.org/10.1002/nag.2184">DOI
Vitel M., Rouabhi A., Tijani M., Guérin F. Thermo-hydraulic modeling of artificial ground freezing: Application to an underground mine in fractured sandstone. Computers and Geotechnics, 2016, vol. 75, pp. 80-92. https://doi.org/10.1016/j.compgeo.2016.01.024">DOI
Chen W., Tan X., Yu H., Wu G., Jia S.A fully coupled thermo-hydro-mechanical model for unsaturated porous media. JRMGE, 2009, vol. 1, pp. 31-40. https://doi.org/10.3724/SP.J.1235.2009.00031">DOI
Lin B., Chen S., Jin Y. Evaluation of reservoir deformation induced by water injection in SAGD wells considering formation anisotropy, heterogeneity and thermal effect. J. Petrol. Sci. Eng., 2017, vol. 157, pp. 767-779. https://doi.org/10.1016/j.petrol.2017.07.067">DOI
Roos H.G., Stynes M., Tobiska L. Robust numerical methods for singularly perturbed differential equations: Convection-diffusion-reaction and flow problems. Springer, 2008. 628 p.
Brooks A.N., Hughes T.J.R. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Meth. Appl. Mech. Eng., 1982, vol. 32, pp. 199-259. https://doi.org/10.1016/0045-7825(82)90071-8">DOI
Hughes T.J.R., Mallet M. A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems. Comput. Meth. Appl. Mech. Eng., 1986, vol. 58, pp. 305-328. https://doi.org/10.1016/0045-7825(86)90152-0">DOI
Bochev P.B., Gunzburger M.D., Shadid J.N. Stability of the SUPG finite element method for transient advection–diffusion problems. Comput. Meth. Appl. Mech. Eng., 2004, vol. 193, pp. 2301-2323. https://doi.org/10.1016/j.cma.2004.01.026">DOI
Burman E. Consistent SUPG-method for transient transport problems: Stability and convergence. Comput. Meth. Appl. Mech. Eng., 2010, vol. 199, pp. 1114-1123. https://doi.org/10.1016/j.cma.2009.11.023">DOI
Salnikov N.N., Siryk S.V. Construction of weight functions of the Petrov–Galerkin method for convection–diffusion–reaction equations in the three-dimensional case. Cybern. Syst. Anal., 2014, vol. 50, pp. 805-814. https://doi.org/10.1007/s10559-014-9671-z">DOI
Hughes T.J.R., Franca L.P., Hulbert G.M. A new finite element formulation for computational fluid dynamics: VIII. The Galerkin-least-squares method for advective-diffusive equations. Comput. Meth. Appl. Mech. Eng., 1989, vol. 73, pp. 173-189. https://doi.org/10.1016/0045-7825(89)90111-4">DOI
Franca L.P., Frey S.L., Hughes T.J.R. Stabilized finite element methods: I. Application to the advective-diffusive model. Comput. Meth. Appl. Mech. Eng., 1992, vol. 95, pp. 253-276. https://doi.org/10.1016/0045-7825(92)90143-8">DOI
Codina R. Comparison of some finite element methods for solving the diffusion-convection-reaction equation. Comput. Meth. Appl. Mech. Eng., 1998, vol. 156, pp. 185-210. https://doi.org/10.1016/S0045-7825(97)00206-5">DOI
Xia K., Yao H. A Galerkin/least-square finite element formulation for nearly incompressible elasticity/stokes flow. Appl. Math. Model., 2007, vol. 31, pp. 513-529. https://doi.org/10.1016/j.apm.2005.11.009">DOI
Ranjan R., Feng Y., Chronopolous A.T. Augmented stabilized and Galerkin least squares formulations. J. Math. Res., 2016, vol. 8, no. 6, pp. 1-33. http://dx.doi.org/10.5539/jmr.v8n6p1">DOI
John V., Knobloch P. On the performance of SOLD methods for convection–diffusion problems with interior layers. Int. J. Comput. Sci. Math., 2007, vol. 1, pp. 245-258. https://doi.org/10.1504/IJCSM.2007.016534">DOI
John V., Knobloch P. On the choice of parameters in stabilization methods for convection–diffusion equations. Numerical Mathematics and Advanced Applications, ed. K. Kunisch, G. Of, O. Steinbach. Springer, 2008. P. 297-304. https://doi.org/10.1007/978-3-540-69777-0_35">DOI
John V., Schmeyer E. Finite element methods for time-dependent convection–diffusion–reaction equations with small diffusion. Comput. Meth. Appl. Mech. Eng., 2008, vol. 198, pp. 475-494. https://doi.org/10.1016/j.cma.2008.08.016">DOI
Hughes T.J.R., Feijóo G.R., Mazzei L., Quincy J.-B. The variational multiscale method – a paradigm for computational mechanics. Comput. Meth. Appl. Mech. Eng., 1998, vol. 166, pp. 3-24. https://doi.org/10.1016/S0045-7825(98)00079-6">DOI
Brezzi F., Hauke G., Marini L.D., Sangalli G. Link-cutting bubbles for the stabilization of convection-diffusion-reaction problems. Math. Model. Meth. Appl. Sci., 2003, vol. 13, pp. 445-461. https://doi.org/10.1142/S0218202503002581">DOI
Brezzi F., Marini L.D., Russo A. On the choice of a stabilizing subgrid for convection–diffusion problems. Comput. Meth. Appl. Mech. Eng., 2005, vol. 194, pp. 127-148. https://doi.org/10.1016/j.cma.2004.02.022">DOI
Juanes R. A variational multiscale finite element method for multiphase flow in porous media. Finite Elem. Anal. Des., 2005, vol. 41, pp. 763-777. https://doi.org/10.1016/j.finel.2004.10.008">DOI
Hughes T.J.R., Sangalli G. Variational multiscale analysis: the fine-scale Green’s function, projection, optimization, localization, and stabilized methods. SIAM J. Numer. Anal., 2007, vol. 45, pp. 539-557. https://doi.org/10.1137/050645646">DOI
Modirkhazeni S.M., Trelles J.P. Algebraic approximation of sub-grid scales for the variational multiscale modeling of transport problems. Comput. Meth. Appl. Mech. Eng., 2016, vol. 306, pp. 276-298. https://doi.org/10.1016/j.cma.2016.03.041">DOI
Sendur A., Nesliturk A., Kaya A. Applications of the pseudo residual-free bubbles to the stabilization of the convection–diffusion–reaction problems in 2D. Comput. Meth. Appl. Mech. Eng., 2014, vol. 277, pp. 154-179. https://doi.org/10.1016/j.cma.2014.04.019">DOI
Zhukov V.T., Novikova N.D., Strakhovskaya L.G., Fedorenko R.P., Feodoritova O.B. Metod konechnykh super·elementov v zadachakh konvektsii-diffuzii [Finite superelement method in convection-diffusion problems]. Preprint, Keldysh Institute of Applied Mechanics. Moscow, 2001. 17 p. (URL: http://keldysh.ru/papers/2001/prep8/prep2001_8.pdf">http://keldysh.ru/papers/2001/prep8/prep2001_8.pdf)
Masud A., Calderer R. A variational multiscale method for incompressible turbulent flows: Bubble functions and fine scale fields. Comput. Meth. Appl. Mech. Eng., 2011, vol. 200, pp. 2577-2593. https://doi.org/10.1016/j.cma.2011.04.010">DOI
Coley C., Evans J.A. Variational multiscale modeling with discontinuous subscales: analysis and application to scalar transport. Meccanica, 2018, vol. 53, pp. 1241-1269. https://doi.org/10.1007/s11012-017-0786-y">DOI
Do Carmo E.G.D., Alvarez G.B. A new upwind function in stabilized finite element formulations, using linear and quadratic elements for scalar convection–diffusion problems. Comput. Meth. Appl. Mech. Eng., 2004, vol. 193, pp. 2383‑2402. https://doi.org/10.1016/j.cma.2004.01.015">DOI
Hauke G. A simple subgrid scale stabilized method for the advection–diffusion-reaction equation. Comput. Meth. Appl. Mech. Eng., 2002, vol. 191, pp. 2925-2947. https://doi.org/10.1016/S0045-7825(02)00217-7">DOI
Ladyzhenskaya O.А., Solonnikov V.А., Ural’tseva N.N. Lineynyye i kvazilineynyye uravneniya parabolicheskogo tipa [Linear and quasi-linear parabolic differential equations]. Moscow, Nauka, 1967. 736 p.
Strang G., Fix G.J. An analysis of the finite element method. New Jersey/Englewood Cliffs, Prentice-Hall, 1973. 306 p.
Comsol Multiphysics 5.4. Reference Manual, 2018, 1622 p.
Downloads
Published
Issue
Section
License
Copyright (c) 2019 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.